Skip to main content
Log in

Diagenesis of the sedimentary rocks enclosing coaly layers in Gavatha area, Lesvos Island, based on silica polymorph’s transformations

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

A Tertiary non-marine stratigraphic sequence composed of carbonates (limestone), siliceous carbonates, coaly layers overlain by pyroclastic rocks and lavas, outcrops in the Gavatha area of northwestern Lesvos Island. Pure carbonates consist almost completely of calcite, the siliceous carbonate sediments of quartz, opal-CT and calcite, the shales of quartz, opal-CT, K-feldspar, smectite-illite and calcite, and the coaly layers of organic matter, quartz, opal-CT, feldspars and pyrite. Geochemical data indicate that smectite-illite, feldspars and associated elements (La, Zr, Y, Ba, Ce) are the products of alteration of volcanic rocks in a subtropical area.

A combination of sources is suggested for the formation of silica polymorphs: (a) biogenic or non-biogenic silica (opal-A) that was originally present in the form of diatom frustules or in the form of inorganically precipitated silica; (b) transformation of opal-A to opal-CT and quartz opal-C from alteration of volcanic glass of intercalated tuffites and overlying volcanics; and (c) opal-CT deposited primarily from hydrothermal solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi, M., K. Yamamoto, and R. Sugisaki, 1986, Hydrothermal chert and associated siliceous rocks from the northern Pacific: their geological significance as indication of ocean ridge activity: Sedimentary Geology, v. 47, p. 125–148.

    Article  Google Scholar 

  • Billings, G. K. and P. C. Ragland, 1968, Geochemistry and mineralogy of the recent reef and lagoonal sediments south of Belize (British Honduras): Chemical, Geology, v. 3, p. 135–153.

    Article  Google Scholar 

  • Greenwood, R., 1973, Gristobalite; its relationship to chert formation in selected samples from the Deep-Sea Drilling Project: Journal of Sedimentary Petrology, v. 43, p. 700–708.

    Google Scholar 

  • Hecht, J., 1971–1974, Geological Map of Lesvos Island (scale 1:50000): I. G.M.E., Athens.

    Google Scholar 

  • Henderson, J.H., M.L. Jackson, J.K. Syers, R.N. Clayton, and R.W. Rex, 1971, Cristobalite authigenic origin in relation to montmorillonite and quartz origin in bentonites: Clays and Clay Minerals, v. 19, p. 229–238.

    Article  Google Scholar 

  • Hein, J.R., D.W. Scholl, J.A. Barron, M. G. Jones, and J. Miller, 1978, Diagenesis of Late Cenozoic diatomaceous deposits and formation of the bottom simulating reflector in the southern Bering Sea: Sedimentology, v. 25, p. 155–181.

    Article  Google Scholar 

  • Hein, J.R. and H. W. Yeh, 1983, Oxygen-isotope composition of secondary silica phases. Costa Rica Rift, Deep Sea Drilling Project Leg 69, in Cann JR, Langseth MG et al., eds., Initial Reports of the Deep Sea Drilling Project 69 U.S. Government Printing Office, Washington: p. 423–429.

    Google Scholar 

  • Hein, J.R., C. Sancetta, and L.A. Morgenson, 1983, Petrology and geochemistry of silicified Upper Miocene chalk, Costa Rica Rift, DSDP Leg 69, in J.R. Cann, M. J. Langseth et al., eds., Initial Reports of the Deep Sea Drilling Project 69 U.S. Government Printing Office, Washington, D.C. p. 395–422.

    Google Scholar 

  • Hirst, D.M. and G.N. Nichols, 1958, Techniques in sedimentary geochemistry: (1) Separation of the detrital and non-detrital fractions of limestones: Journal of Sedimentary Petrology, v. 28, p. 468 -481.

    Google Scholar 

  • Iijima, A., 1980, Geology of natural zeolites and zeolitic rocks, In: Proceedings of the 5 th International Conference on Zeolites, Naples, 1980, Heyden, London, v. 1, p. 103–118.

    Google Scholar 

  • Iijima, A. and R. Tada, 1981, Silica diagenesis of Neogene diatomaceous and volcaniclastic sediments in northern Japan: Sedimentology, v. 28, p. 185–200.

    Article  Google Scholar 

  • Katsikatsos, G., D. Mataragas, G. Migiros, and E. Triantaphyllis, 1982, Geological Study of Lesvos Island: I.G.M.E. Internal Report, Athens, 92p.

    Google Scholar 

  • Kastner, M., J.B. Keene, and J.M. Gieskes, 1977, Diagenesis of siliceous ooze, I. Chemical controls on the rate of opal-A to opal-CT transformation-—an experimental study: Geochimica et Cosmochimica Acta, v. 41, p. 1041–1059.

    Article  Google Scholar 

  • Kastner, M. and R. Siever, 1983, Siliceous sediments of the Guayamas Basin: The effect of high thermal gradients on diagenesis: Journal of Geology, v. 91., p. 629–641.

    Article  Google Scholar 

  • Keene, J. B., 1975, Cherts and porcelanites from the North Pacific DSDP, Leg 32, in Larson, R. L., Moberly, R. et al., eds., Init. Repts. DSDP, 32: Washington (U.S. Govt. Printing Office), p. 429–507.

    Google Scholar 

  • Kelepertsis, A.E. and J. Esson, 1987, Major and trace element mobility in altered volcanic rocks near Stypsi, Lesvos, Greece and genesis of a Kaolin deposit: Applied Clay Science, v. 2, p. 11–28.

    Article  Google Scholar 

  • Kelepertsis, A. and E. Velitzelos, 1992, Oligocene Swamp Sediments of Lesvos Island, Greece (Geochemistry and Mineralogy): FACIES, v. 27, p. 113–118.

    Article  Google Scholar 

  • Mitsui, K. and K. Taguchi, 1977, Silica mineral diagenesis in Neogene Tertiary shales in the Tempoku district, Hokkaido, Japan: Journal of Sedimentary Petrology, v. 47, p. 158–167.

    Google Scholar 

  • Murata, K.J. and K. R. Whitley, 1973, Zeolites in the Miocene Briones sandstone and related formations of the Central Coast Ranges, California, U.S. Geol. Surv.: J. Res., v. 1, p. 255–265.

    Google Scholar 

  • Murata, K.J. and R.R. Larson, 1975, Diagenesis of Miocene siliceous shales, Temblor Range, California, U. S. Geol. Survey: J. Res., v. 3, p. 553–566.

    Google Scholar 

  • Murata, K.J., I. Friedman, and J.D. Gleason, 1977, Oxygen isotope relations between diagenetic silica minerals in Monterey shale, Temblor Range, California: American Journal of Science, v. 277, p. 259–272.

    Google Scholar 

  • Pe-Piper, G., 1980, Geochemistry of Miocene Shoshonites, Lesbos, Greece: Contributions of Mineralogy and Petrology, v. 72, p. 387–396.

    Article  Google Scholar 

  • Pisciotto, K. A., 1978, Basinal sedimentary facies and diagenetic aspects of the Nonterey Shale, California (Ph. D. dissert.): University of California, Santa Cruz.

    Google Scholar 

  • Tada, R. and A. Iijima, 1983, Petrology and diagenetic changes of Neogene siliceous rocks in northern Japan: Journal of Sedimentary Petrology, v. 53, p. 911–930.

    Google Scholar 

  • Taylor, S.R. and S.M. McLennan, 1985, The Continental Crust—Its Composition and Evolution: Biackwell, Oxford.

    Google Scholar 

  • Velitzelos, E., I. Petrescu, and N. Symeonidis, 1981, Tertiare Pflanzenreste aus der Agais. Die Makroflora der Insel Lesbos (Griechenland): Annales Geologiques des Pays Helleniques, v. 30/2, p. 500–514.

    Google Scholar 

  • Williams, L.A., G. A. Parks, and D.A. Crerar, 1985, Silica diagenesis. I. Solubility controls: Journal of Sedimentary Petrology, v. 55, p. 301–311.

    Google Scholar 

  • Zhou Yongzhang, 1990, Geochemical characteristics of siliceous rocks originated from a fossil hydrothermal system in the Upper Devonian strata, Guangxi, southern China: Acta Sedimentol. Sinica, v. 8, n. 3, p. 75–83.

    Google Scholar 

  • Zhou Yongzhang, E.M. Chown, J. Cuha, Lu Huanzhang, and Tu Guangchi, 1994, Hydrothermal origin of Late Proterozoic bedded chert at Gusui, Guangdong, China; petrological and geochemical evidence: Sedimentology, v. 41, p. 605–619.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelepertsis, A. Diagenesis of the sedimentary rocks enclosing coaly layers in Gavatha area, Lesvos Island, based on silica polymorph’s transformations. Chin. J. of Geochem. 15, 20–32 (1996). https://doi.org/10.1007/BF03166793

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166793

Key words

Navigation