Skip to main content
Log in

Multifrequency CW EPR spectroscopy of extraterrestrial carbonaceous matter

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In this work, the carbonaceous matter of Orgueil, Murchison and Tagish Lake carbonaceous meteorites and a reference coal is studied by multifrequency continuous-wave electron paramagnetic resonance (EPR) spectroscopy from 4 to 285 GHz. It is found that the shape of the EPR line of the radicals in meteoritic carbonaceous matter is Lorentzian in all the frequency range, while the line shape of the coal is Lorentzian only below 95 GHz and becomes inhomogeneously broadened at higher frequency, as previously observed for coals by other authors. This points to strong exchange interactions in meteoritic carbonaceous matter, resulting from a pronounced spin clustering that does not occur in biogenic carbonaceous matter (coals). The temperature dependence of the EPR line width has been studied in detail at X- and W-bands for the Orgueil meteorite. It confirmed our previous model of the presence of radicals with thermally accessible triplet states (TATS) in meteorites. These TATS, which were attributed to diradicaloids moieties on the basis of molecular quantum DFT calculations (L. Binet, D. Gourier, S. Derenne, F. Robert, I. Ciofini: Geochim. Cosmochim. Acta 68, 881–891, 2004) do not exist in biogenic carbonaceous matter. This analysis also precised the strength of the clustering effect in meteorites, yielding an estimated local spin concentrationN=5·1020 spin/g, which is two orders of magnitude higher than the average spin concentration in the Orgueil meteorite. It is important to note that such spin clustering has also been observed by other authors in synthetic hydrogenated amorphous carbon. It seems that the clustering of radicals is a common feature of synthetic and extraterrestrial (abiotic) carbonaceous matters, while radicals are homogeneously distributed in biogenic carbonaceous matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robert F., Epstein S.: Geochim. Cosmochim. Acta46, 81–95 (1982)

    Article  ADS  Google Scholar 

  2. Sephton M.A.: Nat. Prod. Rep.19, 292–311 (2002)

    Article  Google Scholar 

  3. Chyba C.F., Sagan C.: Comets and the Origin and Evolution of Life (Thomas P.J., Chyba C.F., McKay C.P., eds.), pp. 147–173. New York: Springer 1997.

    Google Scholar 

  4. Hayatsu R., Matsuoka S., Scott R.G., Studier M.H., Anders E.: Geochim. Cosmochim. Acta41, 1325–1339 (1977)

    Article  ADS  Google Scholar 

  5. Derenne S., Robert F., Binet L., Gourier D., Rouzeau J.N., Largeau C. in: 33rd Lunar and Planetary Sciences Conference, Houston, USA 2002, abstract 1182.

  6. Gardiner A., Derenne S., Robert F., Behar F., Largeau C., Maquet J.: Earth Planet. Sci.184, 9–21 (2000).

    Article  ADS  Google Scholar 

  7. Cody G.D., Alexander C.M. O’D, Tera F.: Geochim. Cosmochim. Acta66, 1851–1865 (2002)

    Article  ADS  Google Scholar 

  8. Hayatsu H., Anders E.: Top. Curr. Chem.99, 1–37 (1981)

    Google Scholar 

  9. Barklie R.C.: Diamond and Related Materials10, 174–181 (2001)

    Article  Google Scholar 

  10. Petrakis L., Fraissard J.P. (eds.): Magnetic Resonance: Introduction, Advanced Topics and Applications to Fossil Energy. Dordrecht: D. Reidel 1984.

    Google Scholar 

  11. Binet L., Gourier D., Derenne S., Robert F.: Geochim. Cosmochim. Acta66, 4177–4186 (2002)

    Article  ADS  Google Scholar 

  12. Binet L., Gourier D., Derenne S., Robert F., Ciofini I.: Geochim. Cosmochim. Acta68, 881–891 (2004)

    Article  ADS  Google Scholar 

  13. Binet L., Gourier D., Derenne S., Pizzarello S., Becker L.: Meteorit. Planet. Sci.39, 1649–1654 (2004)

    Article  ADS  Google Scholar 

  14. Redfield A.G.: Advances in Magnetic Resonance (Waught J.S., ed.), vol. 1, p. 1. New York: Academic Press 1965.

    Google Scholar 

  15. Barklie R.C., Collins M., Silva S.R.P.: Phys. Rev. B61, 3546–3554 (2000)

    Article  ADS  Google Scholar 

  16. Thomann H., Silbernagel B.G., Jin H., Gebhard L.A., Tindall P., Dyrkacz G.R.: Energy Fuels2, 333–339 (1988)

    Article  Google Scholar 

  17. Kevan L., Kispert L.D.: Electron Spin Double Resonance Spectroscopy, p. 19. New York: Wiley 1976.

    Google Scholar 

  18. Durand B., Nicaise G.: Kerogen (Durand B., ed.), p. 35. Paris: Editions Technip 1980.

    Google Scholar 

  19. Muller F., Hopkins M.A., Coron N., Grynberg M., Brunel L.C., Martinez G.: Rev. Sci. Instrum.60, 3681–3684 (1989)

    Article  ADS  Google Scholar 

  20. Conard J. in: Magnetic Resonance: Introduction. Advanced Topics and Applications to Fossil Energy (Petrakis L., Fraissard J.P., eds.) p. 441. Dordrecht: D. Reidel 1984.

    Google Scholar 

  21. Pake G.E., Estle T.L.: The Physical Principles of Electron Paramagnetic Resonance, p. 40. Reading: W. A. Benjamin Inc. 1973.

    Google Scholar 

  22. Clarkson R.B., Wei Wang, Brown D.R., Crookman H.C., Belford R.L.: Fuel69, 1405–1411 (1990)

    Article  Google Scholar 

  23. Bresgunov A.Yu., Poluektov O.G., Lebedev Ya.S., Barra A.L., Brunel L.C., Robert J.B.: Chem. Phys. Lett.175, 621–623 (1990)

    Article  ADS  Google Scholar 

  24. Retcofsky H.L., Stark J.M., Friedel R.A.: Anal. Chem.40, 1699–1704 (1968)

    Article  Google Scholar 

  25. Abragam A.: Principles of Nuclear Magnetism. Oxford: Clarendon Press 1961.

    Google Scholar 

  26. Pilbrow J.R.: Transition Ion Electron Paramagnetic Resonance, p. 249. Oxford: Clarendon Press 1990.

    Google Scholar 

  27. Slichter C.P.: Principles of Magnetic Resonance, 2nd edn., p. 167. Berlin: Springer 1978.

    Google Scholar 

  28. Kubo R., Tomita K.: J. Phys. Soc. Jpn.9, 888–919 (1954)

    Article  ADS  Google Scholar 

  29. von Bardeleben H.J., Cantin J.L., Zellama K., Zeinert A.: Diamond Relat. Mater.12, 124–129 (2003)

    Article  Google Scholar 

  30. Krzystek J., Sienkiewicz A., Brunel L.C.: J. Magn. Reson.125, 207–211 (1997)

    Article  ADS  Google Scholar 

  31. Cage B., Cevc P., Blinc R., Brunel L.C., Dalal N.S.: J. Magn. Reson.135, 178–184 (1998)

    Article  ADS  Google Scholar 

  32. Keeble D.J., Robb K.M., Smith G.M., Mkami H. El., Rodil S.E., Robertson J.: J. Phys. Condens. Matter15, 7463–7468 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binet, L., Gourier, D. Multifrequency CW EPR spectroscopy of extraterrestrial carbonaceous matter. Appl. Magn. Reson. 30, 207–231 (2006). https://doi.org/10.1007/BF03166720

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166720

Keywords

Navigation