Skip to main content
Log in

A review of spin Hamiltonians applicable to exchange-coupled systems of interest in biomaterials

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Dinuclear and tetranuclear complexes of spin-coupled manganese-manganese, manganese-iron, and iron-iron ions occur in enzymes which are of importance in biology and photosynthesis. These multinuclear systems contain higher oxidation states of manganese and iron ions than those of the commonly occurring Mn(II) and Fe(III) mononuclear ions, in which there has been a lot of interest recently with regard to their electron paramagnetic resonance (EPR) spectra. In order to aid the interpretation of EPR spectra, the spin Hamiltonians, and the resulting energy levels, characterizing binuclear and tetranuclear manganese ions will be discussed in this presentation. These will include, in particular, Mn(II)−Mn(III), Mn(III)−Mn(IV), and Mn(IV)−Mn(V) systems for the binuclear situation, and the Mn4O2 “butterfly”, cubane, dimer of dimer systems, and diamond structure for the tetramer situation. These coupled systems are characterized by a variety of exchange interactions whose magnitudes and nature, ferromagnetic or antiferromagnetic, affect profoundly the energy levels. In addition, the hyperfine interactions amongst the various55Mn nuclei produce a complex EPR spectrum consisting of a large number of hyperfine lines. In order to interpret EPR spectra properly, one needs to simulate them as accurately as possible. Details of a rigorous technique for the simulation of EPR spectra of these systems with matrix diagonalization and homotopy technique will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Misra S.K. in: Handbook of Electron Spin Resonance (Poole C.P., Farach H.A. eds.), chapt. 7, p. 115. New York: A.I.P. Press, Springer 1999.

    Google Scholar 

  2. Goldberg D.P., Telser J., Krzystek J., Montalban A.G., Brunel L.C., Barrett A.G.H., Hoffman B.M.: J. Am. Chem. Soc.119, 8722 (1997)

    Article  Google Scholar 

  3. Schafer K.O., Bittl R., Zweygart W., Lendzian F., Heselhorst G., Weyhermüller T., Wieghardt K., Lubitz W.: J. Am. Chem. Soc.120, 13104–13120 (1998)

    Article  Google Scholar 

  4. Brudvig G.W. in: Advanced EPR: Applications in Biology and Biochemistry (Hoff A.J., ed.), pp. 839–863. Amsterdam: Elsevier 1989.

    Google Scholar 

  5. Zheng M., Dismukes G.C.: Inorg. Chem.35, 3307–3319 (1996)

    Article  Google Scholar 

  6. Proserpio D.M., Hoffman R., Dismukes G.C.: J. Am. Chem. Soc.114, 4374–4382 (1992)

    Article  Google Scholar 

  7. Belinski M.I.: Chem. Phys.176, 15–36 (1993)

    Article  ADS  Google Scholar 

  8. Belinski M.I.: Chem. Phys.179, 1–22 (1994)

    Article  ADS  Google Scholar 

  9. Belinski M.I.: Chem. Phys.189, 451–465 (1994)

    Article  ADS  Google Scholar 

  10. Kambe K.: J. Phys. Soc. Jpn.5, 48–51 (1950)

    Article  ADS  Google Scholar 

  11. Budvig G.W., Crabtree R.H.: Proc. Natl. Acad. Sci. USA83, 4586–4588 (1986)

    Article  ADS  Google Scholar 

  12. Kusunoki M. in: Proceedings of the XIIth International Congress on Photosystems, S13–008. Collingwood: CSIRO Publishing 2001.

    Google Scholar 

  13. Zouni A., Witt H., Kern J., Fomme P., Krausb N., Saenger W., Orth P.: Nature409, 739–743 (2001)

    Article  ADS  Google Scholar 

  14. Messinger J., Nugent J.H.A., Evans M.C.W.: Biochemistry36, 11055–11060 (1997)

    Article  Google Scholar 

  15. Messinger J., Robbler J.H., Yu W.O., Sauer K., Yachandr V.K., Klein M.P.: J. Am. Chem. Soc.119, 11349–11350 (1997)

    Article  Google Scholar 

  16. Åhrling K.A., Peterson S., Syring S.: Biochemistry36, 13148–13152 (1997)

    Article  Google Scholar 

  17. Åhrling K.A., Peterson S., Syring S.: Biochemistry37, 8115–8120 (1998)

    Article  Google Scholar 

  18. Abragam A., Pryce M.H.L.: Proc. R. Soc.206, 135–153 (1951)

    Google Scholar 

  19. Boussac A., Kuhl H.K., Ghibaudi E., Rögner M., Rutherford W.A.: Biochemistry38, 11942–11948 (1999)

    Article  Google Scholar 

  20. Bencini A., Gatteschi D.: EPR of Exchange Coupled Systems. Berlin: Springer 1990.

    Google Scholar 

  21. Åhrling K.A., Pace R.J.: Biophys. J.68, 2081–2090 (1995)

    Article  Google Scholar 

  22. Haddy A., Waldo G.S., Sands R.H., Penner-Hahn J.E.: Inorg. Chem.33, 2677–2682 (1994)

    Article  Google Scholar 

  23. Misra S.K.: J. Magn. Reson.137, 83–92 (1999)

    Article  ADS  Google Scholar 

  24. Misra S.K.: J. Magn. Reson.140, 179–188 (1999)

    Article  ADS  Google Scholar 

  25. Misra S.K., Vasilopoulos P.: J. Phys. C: Condens. Matter13, 1083 (1980)

    Google Scholar 

  26. Press W.H., Teukolsky, S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes in Fortran, pp. 456–462. Cambridge: Cambridge University Press 1992.

    MATH  Google Scholar 

  27. Misra S.K.: J. Magn. Reson.23, 403 (1976)

    Google Scholar 

  28. Misra S.K., Subramanian S.: J. Phys. C: Condens. Matter15, 7199 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Professor Arnold Hoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, S.K. A review of spin Hamiltonians applicable to exchange-coupled systems of interest in biomaterials. Appl. Magn. Reson. 24, 127–144 (2003). https://doi.org/10.1007/BF03166656

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166656

Keywords

Navigation