Applied Magnetic Resonance

, Volume 31, Issue 3–4, pp 543–552 | Cite as

W-band31P-ENDOR on the high-affinity Mn2+ binding site in the minimal and tertiary stabilized hammerhead ribozymes

  • O. SchiemannEmail author
  • R. Carmieli
  • D. Goldfarb


The catalytic activity of the tertiary stabilized hammerhead ribozyme (tsHHRz) is by three orders of magnitude higher than the one of the long-known minimal construct (mHHRz). This gives rise to the question whether the single high-affinity manganese(II) binding site present in both ribozymes is located closer to the cleavage site and the transition state in the tsHHRz than in the mHHRz, which would make a direct involvement of this metal(II) ion in the bond-breaking step more likely. Here, we used W-band31P-Davies-ENDOR (electron-nuclear double resonance) to complement earlier reported14N-ESEEM/HYSCORE (electron spin echo envelope modulation/hyperfine sublevel correlation) studies. The31P-ENDOR spectrum of the mHHRz revealed a doublet with a splitting of 8.4(±0.5) MHz but unresolved hyperfine anisotropy. Such a large splitting indicates an inner-sphere coordination of a phosphate backbone group with a significant amount of spin density on the phosphorous nucleus. This is in good agreement with the31P isotropic hyperfine constant,A iso(31P), of +7.8 MHz obtained by density functional theory calculations on the structure of the Mn2+ binding site as found in crystals of the same ribozyme. This supports the idea that the structure and location of the binding site in the mHHRz is in frozen buffer similar to that found in the crystal. Since the W-band ENDOR spectrum of the tsHHRz also shows a31P splitting of 8.4(±0.5) MHz, the local structures of both binding sites appear to be similar, which agrees with the coincidence of the14N data. An involvement of the high-affinity Mn2+ ion in the catalytic step seems therefore unlikely.


Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Density Functional Theory Calculation ENDOR Spectrum Hammerhead Ribozyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eckstein F., Lilley D.M. (eds.): Catalytic RNA. Nucleic Acids and Molecular Biology, vol. 10. Berlin: Springer 1997.Google Scholar
  2. 2.
    Gesteland R.F., Cech T.R., Atkins J.F. (eds.): The RNA World, 3rd edn. Cold Spring Harbor: Cold Spring Harbor Laboratory Press 2006.Google Scholar
  3. 3.
    Ban N., Nissen P., Hansen J., Moore P.B., Steitz T.A.: Science289, 905–930 (2000)CrossRefADSGoogle Scholar
  4. 4.
    Denli A.M., Hannon G.J.: Trends Biochem. Sci.28, 196–201 (2003); Voinnet O.: Trends Genet.17, 449–459 (2001)CrossRefGoogle Scholar
  5. 5.
    Winkler W.C., Breaker R.R.: ChemBioChem.4, 1024–1032 (2003)CrossRefGoogle Scholar
  6. 6.
    Hammann C., Lilley D.M.: ChemBioChem.3, 691–700 (2002)Google Scholar
  7. 7.
    Feig A.L. in: Manganese and Its Role in Biological Processes. Metal Ions in Biological Systems, vol. 37 (Sigel A., Sigel H., eds.), chap. 6. New York: Marcel Dekker 2000.Google Scholar
  8. 8.
    Horton T.E., Clardy D.R., DeRose V.J.: Biochemistry37, 18094–18101 (1998)CrossRefGoogle Scholar
  9. 9.
    Morrissey S.R., Horton T.E., Grant C.V., Hoogstraten C.G., Britt R.D., DeRose V.J.: J. Am. Chem. Soc.121, 9215–9218 (1999)CrossRefGoogle Scholar
  10. 10.
    Kisseleva N., Khvorova A., Westhof E., Schiemann O., Wolfson A.: RNA, in press (2006)Google Scholar
  11. 11.
    Khvorova A., Lescoute A., Westhof E., Jayasena S.D.: Nat. Struct. Biol.10, 708–712 (2003)CrossRefGoogle Scholar
  12. 12.
    Kisseleva N., Khvorova A., Westhof E., Schiemann O.: RNA11, 1–6 (2005)CrossRefGoogle Scholar
  13. 13.
    Pley H.W., Flaherty K.M., MacKay D.B.: Nature372, 68–74 (1994); Scott W.G., Murray J.B., Arnold J.R.P., Stoddard B.L., Klug A.: Science274, 2065–2069 (1996)CrossRefADSGoogle Scholar
  14. 14.
    Schiemann O., Fritscher J., Kisseleva N., Sigurdsson S.T., Prisner T.F.: ChemBioChem.4, 1057–1065 (2003)CrossRefGoogle Scholar
  15. 15.
    Martick M., Scott W.G.: Cell126, 309–320 (2006)CrossRefGoogle Scholar
  16. 16.
    Gray D.M., Hung S.H., Johnson K.H.: Methods Enzymol.246, 19–34 (1995)CrossRefGoogle Scholar
  17. 17.
    Gromov I., Krymov V., Manikandan P., Arieli D., Goldfarb D.: J. Magn. Reson.139, 8–17 (1999)CrossRefADSGoogle Scholar
  18. 18.
    Epel B., Arieli D., Baute D., Goldfarb D.: J. Magn. Reson.164, 78–83 (2003)CrossRefADSGoogle Scholar
  19. 19.
    Osborne E.M., Schaak J.E., DeRose V.J.: RNA11, 187–196 (2005)CrossRefGoogle Scholar
  20. 20.
    Klotz I.M.: Ligand Receptor Energetics. A Guide for the Perplexed. New York: Wiley-Interscience Publication 1997.Google Scholar
  21. 21.
    Arieli D., Delabie A., Vaughan D.E.W., Strohmaier K.G., Goldfarb D.: J. Phys. Chem. B106, 7509–7519 (2002)CrossRefGoogle Scholar
  22. 22.
    Schneider B., Sigalat C., Amano T., Zimmermann J.-L.: Biochemistry39, 15500–15512 (2000)CrossRefGoogle Scholar
  23. 23.
    Morrissey S.R., Horton T.E., DeRose V.J.: J. Am. Chem. Soc.122, 3473–3481 (2000)CrossRefGoogle Scholar
  24. 24.
    Hoogstraten C.G., Grant C.V., Horton T.E., DeRose V.J., Britt R.D.: J. Am. Chem. Soc.124, 834–842 (2002)CrossRefGoogle Scholar
  25. 25.
    Bennati M., Hertel M.M., Fritscher J., Prisner T.F., Weiden N., Hofweber R., Spörner M., Horn G., Kalbitzer H.R.: Biochemistry45, 45–50 (2006)CrossRefGoogle Scholar
  26. 26.
    Petersen J., Gessner C., Fisher K., Mitchel C.J., Lowe D.J., Lubitz W.: Biochem. J.391, 527–539 (2000)Google Scholar
  27. 27.
    Potapov A., Goldfarb D.: Appl. Magn. Reson.30, 461–477 (2006)CrossRefGoogle Scholar
  28. 28.
    Manikandan P., Carmieli R., Shane T., Kalb A.J., Goldfarb D.: J. Am. Chem. Soc.122, 3488–3494 (2000)CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Institute of Physical and Theoretical ChemistryJ. W. Goethe UniversityFrankfurtGermany
  2. 2.Department of Chemical PhysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations