Skip to main content
Log in

Identification of paramagnetic centers and the dating of cave dripstones by electron paramagnetic resonance

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Dating of samples of cave dripstones collected from the Jaskinia Czarna (the Polish Tatra Mountains) and fossil bones was carried out by means of electron paramagnetic resonance (EPR). By this method the age of the sample is found as the ratio of the total dose (TD) to the annual dose rate (D a). TD is established on the basis of EPR spectra, whileD a is the sum of the internal dose rate, calculated on the basis of the concentration and activity of radioactive nuclides in the sample, and the external dose rate measured at the site of the sample collection by a calibrated γ-radiation probe. Two models of uranium accumulation were used: the model of linear accumulation and the model on the basis of the assumption of a disturbed radiation equilibrium in the uranium series. The results were compared with the age determined by the uranium-thorium method. Moreover, by the computer resolution enhancement method the dynamics of paramagnetic centers in calcite annealed in nitrogen atmosphere was studied in the range of 283–873 K, and the results were compared with earlier results for calcite annealed in the air. On the basis of the study of paramagnetic center dynamics in dripstone calcite it was established that the radicals responsible for the EPR signals were CO 2 in different symmetries of the crystalline field, CO 3−3 in the axial symmetry, CO 3 in the axial and isotropic symmetry and HCO 2−3 . The results implied that samples to be subjected to EPR dating should be kept at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smart P.L., Frances P.D.: Quaternary Dating Methods — A User’s Guide, Technical Guide no. 4, p. 112. Cambridge: Quaternary Research Association 1991.

    Google Scholar 

  2. Ikeya M.: Jpn. J. Appl. Phys.21, L690-L692 (1982)

    Article  ADS  Google Scholar 

  3. Hercman H.: Politechnika Śląska — Zeszyty Naukowe, no. 1080, 20–21 (1991)

    Google Scholar 

  4. Gordy W.: Theory and Applications of Electron Spin Resonance. New York: Wiley 1979.

    Google Scholar 

  5. Krzyminiewski R., Kowalczyk R.M., Bielewicz-Mordalska A., Pająk Z., Czarnecki P.: J. Mol. Struct.471, 234–249 (1998)

    Article  Google Scholar 

  6. Hedberg A., Ehrenberg A.: J. Chem. Phys.48, 4822 (1968)

    Article  ADS  Google Scholar 

  7. Koper A., Krzyminiewski R.: Acta Magn.II, 3 (1985)

    Google Scholar 

  8. Madisetti V.K., Williams D.B. (eds.): The Digital Signal Processing Handbook. New York: CRC/IEEE Press 1998.

    Google Scholar 

  9. Krzyminiewski R., Frąckowiak M.: Mol. Phys. Rep.28, 89–100 (2000)

    Google Scholar 

  10. Blackwell B.A.: Quat. Sci. Rev.13, 651–660 (1994)

    Article  ADS  Google Scholar 

  11. Cetin O., Özer A.M., Wiesert A.: Quat. Sci. Rev.13, 661–669 (1994)

    Article  ADS  Google Scholar 

  12. Desrosiers M., Schauer D.A.: Nucl. Instrum. Methods Phys. Res. B184, 219–228 (2001)

    Article  ADS  Google Scholar 

  13. Ikeya M., Miki T.: Acta Carsol.XI, 121–130 (1982)

    Google Scholar 

  14. Wieser A., Göksu H.Y., Regulla D.F., Vogenauer A.: Quat. Sci. Rev.7, 491–495 (1988)

    Article  ADS  Google Scholar 

  15. Gaigalas A., Molodkov A.: Geochronometria21, 57–64 (2002)

    Google Scholar 

  16. Debuyst R., Bidiamambu M., Dejehet F.: Nucl. Track Radiat. Meas.18, 193–201 (1991)

    Article  Google Scholar 

  17. Duliu O.G.: Appl. Rad. Isotopes52, 385–1390 (2000)

    Article  Google Scholar 

  18. Dash J.K., Balakrishnan S., Rao P.S.: Adv. ESR Appl.18, 41–46 (2002)

    Google Scholar 

  19. Landolt-Börstein: Magnetic Properties of Free Radicals, Part a: Atoms, Inorganic Radicals and Radicals in Metal Complexes (Daul C., Fisher H., Morton F.H., Preston K.F., Zelewsky A.V., eds.), group 2, vol. 9. Berlin: Springer 1977.

    Google Scholar 

  20. Marshall S.A., McMillan J.A., Serway R.A.: J. Chem. Phys.48, 5131–5137 (1968)

    Article  ADS  Google Scholar 

  21. Serway R.A., Marshall S.A.: J. Chem. Phys.46, 1949–1952 (1967)

    Article  ADS  Google Scholar 

  22. Kai A., Miki T., Ikeya M.: Quat. Sci. Rev.7, 503–507 (1988)

    Article  ADS  Google Scholar 

  23. Noething-Laslo V., Brečević L.: Phys. Chem. Chem. Phys.2, 5328–5332 (2000)

    Article  Google Scholar 

  24. Moens P.D.W., Callens F.J., Verbeeck R.M.H., Naessens D.E.: Appl. Radiat. Isot.44, 279–285 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wencka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wencka, M., Krzyminiewski, R. Identification of paramagnetic centers and the dating of cave dripstones by electron paramagnetic resonance. Appl. Magn. Reson. 26, 561–578 (2004). https://doi.org/10.1007/BF03166583

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166583

Keywords

Navigation