Advertisement

Applied Magnetic Resonance

, Volume 26, Issue 1–2, pp 171–182 | Cite as

Trovacenyl-based organometallic triradicals: Spin frustration, competing interactions and redox splitting

  • O. SchiemannEmail author
  • J. Plackmeyer
  • J. Fritscher
  • J. Pebler
  • C. Elschenbroich
Article

Abstract

Two new triradicals based on trovacene [η7-tropylium)vanadium(η5-cyclopentadienyl)], 1,3,5-tri([5]trovacenyl) benzene4 and 1,3,5-tri([5]trovacenyl)-6-methoxybenzene5 were prepared and their magnetic properties were studied by continuous-wave X-band electron paramagnetic resonance (EPR) spectroscopy and by temperature-dependent magnetic susceptometry. The EPR spectra of4 and5 in liquid toluene solution demonstrate that the three unpaired electrons localized on the vanadium atoms interact with each other in both complexes. The data from magnetic susceptometry revealed that the electron spins in both triradicals are antiferromagnetically coupled despite themeta-phenylene bridge. The exchange coupling constants are equal in the C3-symmetrical triradical4 (J=J′=−0.68 cm−1), which leads to a twofold degenerate spin ground state (spin frustration). The symmetry lowering by methoxy substitution of the benzene spacer in5 results in the effect of c ompeting interactions (J=−1.83 cm−1 andJ′=−2.38 cm−1). In addition to magnetocommunication, the effect of ring substitution on electrocommunication is also discernable. It manifests itself indisparate redox splittings δE 1/2 (0/−, −/2−) and δE 1/2 (−/2−, 2−/3−) for5, while these parameters are equal for the C3-symmetrical trinuclear complex4.

Keywords

Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Unpaired Electron Electron Paramagnetic Resonance Spectroscopy Vanadium Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gatteschi D., Kahn O., Miller J.S., Palacio F. (eds.): Magnetic Molecular Materials. NATO ASI Series, series N, vol. 198. Dordrecht: Kluwer Academic 1991.Google Scholar
  2. 2.
    Miller J.S., Drillon M. (eds.) Magnetism: Molecules to Materials. Weinheim: Wiley-VCH 2002.Google Scholar
  3. 3.
    Bencini A., Gatteschi D.: Electron Paramagnetic Resonance of Exchange Coupled Systems, chapt. 9. Berlin: Springer 1990.Google Scholar
  4. 4.
    Borden W.T. (ed.): Diradicals: New York: Wiley 1982.Google Scholar
  5. 5.
    Kahn O.: Molecular Magnetism, Weinheim: Wiley-VCH 1993.Google Scholar
  6. 6.
    Kokorin A.I.: Appl. Magn. Reson.26, 253–274 (2004)CrossRefGoogle Scholar
  7. 7.
    Saladino A.C., Larsen S.C.: J. Phys. Chem. A107, 4735–4740 (2003)CrossRefGoogle Scholar
  8. 8.
    Barlow S., O’Hare D.: Chem. Rev.97, 637–670 (1997)CrossRefGoogle Scholar
  9. 9.
    Elschenbroich C., Plackmeyer J., Harms K., Burghaus O., Pebler J.: Organometallics22, 3367–3373 (2003)CrossRefGoogle Scholar
  10. 10.
    Lathi P.M. (ed.): Magnetic Properties of Organic Materials. New York: Marcel Dekker 1999.Google Scholar
  11. 11.
    Elschenbroich C., Metz B., Neumüller B., Reijerse E.: Organometallics13, 5072–5079 (1994)CrossRefGoogle Scholar
  12. 12.
    Ishida T., Iwamura H.: J. Am. Chem. Soc.113, 4238–4241 (1991)CrossRefGoogle Scholar
  13. 13.
    Rajca A., Rajca S., Desai S.R.: J. Am. Chem. Soc.117, 806–816 (1995)CrossRefGoogle Scholar
  14. 14.
    Matsuda K., Nakamura N., Inoue K., Koga N., Iwamura H.: Chem. Eur. J.2, 259–264 (1996)CrossRefGoogle Scholar
  15. 15.
    Okada K., Imakura T., Oda M., Murai H., Baumagarten M.: J. Am. Chem. Soc.118, 1452–1463 (1996)CrossRefGoogle Scholar
  16. 16.
    West A.P., Silverman S.K., Dougherty D.A.: J. Am. Chem. Soc.118, 14520–1463 (1996)CrossRefGoogle Scholar
  17. 17.
    Dvolaitzky M., Chiarelli R., Rassat A.: Angew. Chem. Int. Ed.31, 180–181 (1992)CrossRefGoogle Scholar
  18. 18.
    a) Elschenbroich C., Wolf M., Schiemann O., Harms K., Burghaus O., Pebler J.: Organometallics21, 5810–5819 (2002); b) Burghaus O., Schiemann O., Wolf M. Plackmeyer J., Elschenbroich C. in: Proceedings of the Joint 29th AMPERE — 13th ISMAR (Ziessow D., Lubitz W., Lendzian F., eds.), p. 1186. Berlin: Technische Universität Berlin 1998.CrossRefGoogle Scholar
  19. 19.
    Elschenbroich C., Wolf M., Burghaus O., Harms K., Pebler J.: Eur. J. Inorg. Chem.12, 2173–2185 (1999)CrossRefGoogle Scholar
  20. 20.
    Elschenbroich C., Schiemann O., Burghaus O., Harms K., Pebler J.: Organometallics18, 3273–3277 (1999)CrossRefGoogle Scholar
  21. 21.
    Elschenbroich C., Schiemann O., Burghaus O., Harms K., Pebler J.: J. Am. Chem. Soc.119, 7452–7457 (1997)CrossRefGoogle Scholar
  22. 22.
    Elschenbroich C., Bilger E., Metz B.: Organometallics10, 2823–2827 (1991)CrossRefGoogle Scholar
  23. 23.
    Schiemann O.: Ph.D. thesis, Phillips University of Marburg, Marburg, Germany, 1998.Google Scholar
  24. 24.
    Groenenboom J.C., DeLiefde H.J., Jellinek F.: J. Organomet. Chem.69, 235–240 (1974)CrossRefGoogle Scholar
  25. 25.
    Elschenbroich C.: Organometallchemie, 4th edn. Wiesbaden: Teubner 2003.Google Scholar
  26. 26.
    Elschenbroich C., Voss S., Schiemann O., Lippek A., Harms K.: Organometallics17, 4417–4424 (1998)CrossRefGoogle Scholar
  27. 27.
    King R.B., Stone F.G.A.: J. Am. Chem. Soc.81, 5263–5264 (1959)CrossRefGoogle Scholar
  28. 28.
    Hayashi T., Konishi M., Kumada M.: Tetrahedron Lett.21, 1871–1874 (1979)CrossRefGoogle Scholar
  29. 29.
    Willgerodt C., Arnold E.: Chem. Ber.34, 3345–3358 (1901)Google Scholar
  30. 30.
    Knochel P., Jones P. (eds.) Organozinc Reagents: A Practical Approach, chapt. 11. Oxford: Oxford University Press 1999.Google Scholar
  31. 31.
    Fujita J., Tanaka M., Suemune H., Koga N., Matsuda K., Iwamura H.: J. Am. Chem. Soc.118, 9347–9351 (1996)CrossRefGoogle Scholar
  32. 32.
    Woo H.Y., So H., Pope M.T.: J. Am. Chem. Soc.118, 621–626 (1996)CrossRefGoogle Scholar
  33. 33.
    Shiomi D., Kaneda C., Kanaya T., Sato K., Takui T.: Appl. Magn. Reson.23, 495–506 (2003)CrossRefGoogle Scholar
  34. 34.
    McCusker J.K., Vincent J.B., Schmitt E.A., Mino M.L., Shin K., Coggin A.K., Hagen P.M., Huffman J.C., Christou G., Hendrickson D.N.: J. Am. Chem. Soc.113, 3012–3021 (1991)CrossRefGoogle Scholar
  35. 35.
    Bats J.W., Ma K., Wagner M.: Acta Crystallogr. C58, m129 (2002)CrossRefGoogle Scholar
  36. 36.
    Horn H., Rudolph F., Ahlrichs R., Merzeiler K.: Z. Naturforsch. B47, 1 (1992)Google Scholar
  37. 37.
    LaMar G.N.,Horrocks W.W., Holm R.H. (eds.) NMR of Paramagnetic Molecules: Principles and Applications, chapt. 6. New York: Academic Press 1973.Google Scholar
  38. 38.
    Rettig M.F., Stout C.D., Klug A., Farnham P.: J. Am. Chem. Soc.92, 5100–5104 (1970)CrossRefGoogle Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • O. Schiemann
    • 1
    Email author
  • J. Plackmeyer
    • 1
  • J. Fritscher
    • 1
  • J. Pebler
    • 2
  • C. Elschenbroich
    • 2
  1. 1.Institute für Physikalische und Theoretische ChemieJ. W. Goethe-UniversitätFrankfurt am MainGermany
  2. 2.Fachbereich ChemiePhilipps-UniversitätMarburgGermany

Personalised recommendations