Skip to main content
Log in

Using quaternions to design composite pulses for spin-1 NQR

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The fictitious spin-1/2 operators are well known to describe the evolution of a pure nuclear quadrupole resonance (NQR) system; particularly, the application of a radio-frequency pulse at one of the NQR transition frequencies is equivalent to a three-dimensional rotation in a space defined by the corresponding fictitious spin-1/2 operators. We demonstrate, theoretically and experimentally, that consecutive noncommuting rotations applied at the same transition frequency are well described by a single rotation given by quaternion parameterization of the rotations in ficitious spin-1/2 operator space. This new route could greatly save computing time and efforts. We extend this approach to design composite pulses that compensate for the effects of the radio-frequency field inhomogeneity for a powder sample of spin-1 nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levitt M.H.: Prog. NMR Spectrosc.18, 61–122 (1986)

    Article  ADS  Google Scholar 

  2. Hamilton W.R.: Proc. R. Irish. Acad.2, 424–434 (1844); Hamilton W.R.: Elements of Quaternions, 3rd edn. New York: Chelsea 1969.

    Google Scholar 

  3. Blümich B., Spiess H.W.: J. Magn. Reson.61, 356–362 (1985)

    Google Scholar 

  4. Counsell C., Levitt M.H., Ernst R.R.: J. Magn. Reson.63, 133–141 (1985)

    Google Scholar 

  5. Siminovitch D.J.: Concepts Magn. Reson.9, 149–171 (1997)

    Article  Google Scholar 

  6. Ramamoorthy A., Narasimhan P.T.: J. Mol. Struct.192, 333–344 (1989)

    Article  ADS  Google Scholar 

  7. Ramamoorthy A., Narasimhan P.T.: Z. Naturforsch. A45, 581–586 (1990)

    Google Scholar 

  8. Ramamoorthy A.: Mol. Phys.93, 757–766 (1998)

    ADS  Google Scholar 

  9. Odin C.: J. Magn. Reson.143, 299–310 (2000)

    Article  ADS  Google Scholar 

  10. Ageev S.Z., Isbister D.J., Sanctuary B.C.: Mol. Phys.83, 193–210 (1994)

    Article  ADS  Google Scholar 

  11. Li G.Y., Jiang Y., Wu X.W.: Chem. Phys. Lett.202, 82–86 (1993)

    Article  ADS  Google Scholar 

  12. Li G.Y., Wu X.W.: Chem. Phys. Lett.204, 529–532 (1993)

    Article  ADS  Google Scholar 

  13. Li G.Y., Jiang Y., Wu X.W.: Magn. Reson. Chem.31, 656–658 (1993)

    Article  Google Scholar 

  14. Bai N.S., Ramakrishna M., Ramachandran R.: J. Magn. Reson. A104, 203–208 (1993)

    Article  Google Scholar 

  15. Slichter C.P.: Principles of Magnetic Resonance. Berlin: Springer 1990.

    Google Scholar 

  16. Vega S., Pines A.: J. Chem. Phys.66, 5624–5644 (1977)

    Article  ADS  Google Scholar 

  17. Cantor R.S., Waugh J.S.: J. Chem. Phys.73, 1054–1063 (1980)

    Article  ADS  Google Scholar 

  18. Sauer K.L., Suits B.H., Garroway A.N., Miller J.B.: J. Chem. Phys.118, 5071–5081 (2003)

    Article  ADS  Google Scholar 

  19. Vega S.: J. Chem. Phys.61, 1093–1100 (1974)

    Article  ADS  Google Scholar 

  20. Ermakov V.L., Osokin D.Y.: Phys. Status Solidi166, 239–248 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauer, K.L., Klug, C.A., Miller, J.B. et al. Using quaternions to design composite pulses for spin-1 NQR. Appl. Magn. Reson. 25, 485–500 (2004). https://doi.org/10.1007/BF03166543

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166543

Keywords

Navigation