Skip to main content
Log in

Correlation-based method for improvement of NQR signals utilizing signal shape information

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In the correlation method the signal shape information can be utilized for detection of weak signals, hidden in the noise. We tested the advantages, drawbacks and some practical features of the method applied to magnetic resonance detection. The influence of the signal width, shape and similarity to the template on the correlation function was studied by numerical simulation. The findings were applied to the optimization of the template for improved localization of a noisy14N nuclear quadrupole resonance (NQR) line in NaNO2 during repetitive scans by a superregenerative spectrometer. The value of the correlation method in faster NQR intensity evaluation was also confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proakis J.G., Manolakis D.G.: Digital Signal Processing: Principles, Algorithms, and Applications, 2nd edn., pp. 75–76. New York: Macmillan 1992.

    Google Scholar 

  2. Bendat J.S., Piersol A.G.: Random Data: Analysis and Measurement Procedures, 3rd edn.. New York: Wiley 2000.

    MATH  Google Scholar 

  3. Caldwell R.A., Hacobian S.: Aust. J. Chem.23, 1321–1331 (1970)

    Google Scholar 

  4. Narath A., O’Sullivan W.J., Robinson W.A., Simmons W.W.: Rev. Sci. Instrum.35, 476–380 (1964)

    Article  ADS  Google Scholar 

  5. Peterson G.E., Bridenbaugh P.M.: Rev. Sci. Instrum.35, 698–700 (1964)

    Article  ADS  Google Scholar 

  6. Sullivan E.P.A.: J. Mol. Struct.83, 415–424 (1982)

    Article  ADS  Google Scholar 

  7. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes in C, 2nd edn., p. 498, pp. 545–546. New York: Cambridge University Press 1994.

    Google Scholar 

  8. Singh S., Singh K.: J. Phys. Soc. Jpn.36, 1588–1592 (1974)

    Article  ADS  Google Scholar 

  9. Petersen G., Bray P.J.: J. Chem. Phys.64, 522–530 (1976)

    Article  ADS  Google Scholar 

  10. Yoon J.G., Yu I., Kwun S.I.: Ferroelectrics Lett. Sect.7, 21–24 (1987)

    Article  Google Scholar 

  11. Han K.T., Yeom T.H., Choh S.H.: Ferroelectrics107, 349–354 (1990)

    Google Scholar 

  12. Song S.K., Park Y.M., Jung J.K., Seo Y.M., Choh S.H.: Z. Naturforsch. A55 219–224 (2000)

    Google Scholar 

  13. Seliger J. in: Encyclopedia of Spectroscopy and Spectrometry (Lindon J.C., Tranter G.E., Holmes J.L., eds.), pp. 1678–1680. London: Academic Press 2000.

    Google Scholar 

  14. Schempp E., Bray P.J. in: Physical Chemistry: an Advanced Treatise (Eyring H., Henderson D., Jost W., eds.), vol. 4, p. 539. New York: Academic Press 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirnat, J., Trontelj, Z. Correlation-based method for improvement of NQR signals utilizing signal shape information. Appl. Magn. Reson. 27, 343–357 (2004). https://doi.org/10.1007/BF03166328

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166328

Keywords

Navigation