Skip to main content
Log in

The stabilization of unusual conformers in guest-host systems: Solid-state NMR investigations of 2-methylhexadecane in urea and thiourea

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Solid-state nuclear magnetic resonance (NMR) spectroscopy is employed for the first time on urea and thiourea inclusion compounds (UICs and TICs) containing branched alkyl chains. In the present work,2H and13C NMR as well as X-ray diffraction studies of two selectively deuterated 2-methylhexadecanes in UIC and TIC are presented. An analysis of the derivedT 1 data reveals significant differences between UICs and TICs, which can be attributed to differences in the motional features of the guest species. It is found that four different motional contributions have to be considered, namely, chain rotation, chain wobbling,trans-gauche isomerization and methyl group rotation. 2-Methylhexadecane in UIC exists in an almost all-trans conformation (gauche amount not more than 5%) and undergoes fast chain rotation (6-site jump process, activation energyE A=16.7 kJ/mol). The analysis of the2H NMR spectra of 2-methylhexadecane-1,1′,2-d7 in urea proves that the branched chain end exists in an eclipsed conformation. TheT 1 data of 2-methylhexadecane-3-d2 in thiourea can be reproduced by an overall rotation (E A=9.8 kJ/mol) and atrans-gauche isomerization with torsional jumps around the C-3-C-4 bond (E A=11.0 kJ/mol,gauche population=15%). As for the corresponding UIC, the2H NMR spectra of 2-methylhexadecane-1,1′,2-d7 in TIC can be only explained by the existence of an eclipsed conformation at the branched chain end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hollingsworth M.D., Harris K.D.M. in: Comprehensive Supramolecular Chemistry (Atwood J.L., Davies J.E.D., MacNicol D., Voegtle E., eds.), vol. 6, pp. 177–237. London: Pergamon 1996.

    Google Scholar 

  2. Harris K.D.M.: J. Mol. Struct.374, 241–250 (1996)

    Article  ADS  Google Scholar 

  3. Bagahdi A.E., Doufourc E.F., Guillaume F.J.: Phys. Chem.100, 1746–1752 (1996)

    Article  Google Scholar 

  4. Greenfield M.S., Vold R.L., Vold R.R.: J. Chem. Phys.83, 1440–1443 (1985)

    Article  ADS  Google Scholar 

  5. Casal H.L., Cameron D.G., Kelusky E.C.: J. Chem. Phys.80, 1407–1410 (1984)

    Article  ADS  Google Scholar 

  6. Harris K.D.M., Jonsen P.: Chem. Phys. Lett.154, 593–598 (1989)

    Article  ADS  Google Scholar 

  7. Schmider J., Müller K.: J. Phys. Chem. A102, 1181–1193 (1998)

    Article  Google Scholar 

  8. Forst R., Boysen H., Frey F., Jagodzinski H., Zeyer C.: J. Phys. Chem. Solids47, 1089–1097 (1986)

    Article  ADS  Google Scholar 

  9. Chatani Y., Anraku H., Taki Y.: Mol. Cryst. Liq. Cryst.48, 219–231 (1978)

    Article  Google Scholar 

  10. Le Lann H., Odin C., Toudic B., Ameline J.C., Gallier J., Guillaume F., Breczewski T.: Phys. Rev. B62, 5442–5451 (2000)

    Article  ADS  Google Scholar 

  11. Casal H.L., Cameron D.G., Keluksy E.C., Tulloch A.P.: J. Chem. Phys.81, 4322–4327 (1984)

    Article  ADS  Google Scholar 

  12. Vold R.L., Hoatson G.L., Subramanian R.: J. Chem. Phys.108, 7305–7316 (1998)

    Article  ADS  Google Scholar 

  13. Werner-Zwanziger U., Brown M.E., Chaney J.D., Still E.J., Hollingsworth M.D.: Appl. Magn. Reson.17, 265–281 (1999)

    Article  Google Scholar 

  14. Casal H.L.: J. Phys. Chem.94, 2232–2234 (1990)

    Article  Google Scholar 

  15. Elizabe L., Baghadi A.E., Smart S.P., Guillaume F., Harris K.D.M.: J. Chem. Soc. Faraday Trans.92, 267–272 (1996)

    Article  Google Scholar 

  16. Bengen F., Schlenk W. Jr.: Experientia5, 200 (1949)

    Article  Google Scholar 

  17. Schlenk W. Jr.: Liebigs Ann. Chem.573, 142–162 (1951)

    Article  Google Scholar 

  18. Harris K.D.M., Thomas J.M.: Chem. Soc. Faraday Trans.86, 1095–1101 (1990)

    Article  Google Scholar 

  19. Sergienko S.R., Aidogdyev A., Ovezov A., Talalaev E.I.: Ser. Fiz-Tekh., Khim. Geol. Nauk.1, 113–116 (1976)

    Google Scholar 

  20. Tamura M., Kochi J.: Synthesis1971, 303–305.

  21. Baer T.A., Carney R.L.: Tetrahedron Lett.51, 4697–4700 (1976)

    Article  Google Scholar 

  22. Schlenk W. Jr.: Liebigs Ann. Chem.565, 204–240 (1949)

    Article  Google Scholar 

  23. Fetterly L.C. in: Chemical Analysis of Resin-Based Coating Materials (Kappelmeier C.P.A., ed.), chapt. XV, pp. 503–525. New York: Wiley 1959.

    Google Scholar 

  24. Yeo L., Harris K.D.M.: Acta Crystallogr. B53, 822–830 (1997)

    Article  Google Scholar 

  25. Heaton N.J., Vold R.R., Vold R.L.: J. Magn. Reson.77, 572–576 (1988)

    Google Scholar 

  26. Hyperchem® Release 5.0 from Hypercube, Inc, Gainsville, Florida 32601 USA

  27. Mathcad 2001 Professional from Mathsoft Engineering & Education, Inc. Cambridge, Massachusetts, USA

  28. Sheldrick G.M.: Program System SHELX-97, Göttingen, Germany 1997.

  29. Harris K.D.M., Thomas J.M.: J. Chem. Soc. Faraday Trans.86, 2985–2996 (1990)

    Article  Google Scholar 

  30. Oshima Y., Chida F., Ohnuma H.: Nippon Kagaku Kaishi1, 99–101 (1978)

    Google Scholar 

  31. Petrakis L., Seshadri K.S.: Appl. Spectross.33, 138–145 (1979)

    Article  ADS  Google Scholar 

  32. Alemany L.B.: Magn. Reson. Chem.27, 1065–1073 (1989)

    Article  Google Scholar 

  33. Okazaki M., McDowell C.A.: J. Mol. Struct.118, 149–156 (1984)

    Article  ADS  Google Scholar 

  34. Imashiro F., Kuwahara D., Nakai T., Terao T.: J. Chem. Phys.90, 3356–3362 (1989)

    Article  ADS  Google Scholar 

  35. Ishikawa S., Kurosu H., Ando I.: J. Mol. Struct.248, 361–372 (1991)

    Article  ADS  Google Scholar 

  36. Burnett L.J., Müller B.H.: J. Chem. Phys.55, 5829–5831 (1971)

    Article  ADS  Google Scholar 

  37. Schmider J., Fritsch G., Haisch T., Müller K.: Mol. Cryst. Liq. Cryst.356, 99–109 (2001)

    Article  Google Scholar 

  38. Greenfield M.S., Vold R.L., Vold R.R.: Mol. Phys.66, 269–298 (1989)

    Article  ADS  Google Scholar 

  39. Bovey F.A., Jelinski L., Mirau P.A.: Nuclear Magnetic Resonance Spectroscopy, 2nd edn. San Diego: Academic Press 1988.

    Google Scholar 

  40. Liebelt A., Detken A., Müller K.: J. Phys. Chem. B106, 7781–7791 (2002)

    Article  Google Scholar 

  41. Levy G.C., Lichter R.L., Nelson G.L.: Carbon-13 Nuclear Magnetic Resonance Spectroscopy, 2nd edn. New York: Wiley 1980.

    Google Scholar 

  42. Smith J.C., Karplus M.: J. Am. Chem. Soc.114, 801–812 (1992)

    Article  Google Scholar 

  43. Wittebort R.J., Olejniczak E.T., Griffin R.G.: J. Chem. Phys.86, 5411–5420 (1987)

    Article  ADS  Google Scholar 

  44. Van S.P., Birell G.B., Griffith O.H.: J. Magn. Reson.15, 444–459 (1974)

    Google Scholar 

  45. Seelig J.: Q. Rev. Biophys.10, 353–418 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handel, T., Lissner, F., Schleid, T. et al. The stabilization of unusual conformers in guest-host systems: Solid-state NMR investigations of 2-methylhexadecane in urea and thiourea. Appl. Magn. Reson. 27, 225–249 (2004). https://doi.org/10.1007/BF03166317

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166317

Keywords

Navigation