Skip to main content
Log in

Nuclear exchange coupling and electronic structure of low-dimensional semiconductors

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

We review the nuclear magnetic resonance (NMR) studies of the indirect nuclear exchange coupling and electronic structure of the chain and layered semiconductors Tl(I)M(III)X2 (M = Tl, Ga, In, X = Se, S, Te) and some other low-dimensional Tl-contained semiconducting compounds. Both univalent and trivalent Tl atoms in these compounds show essential chemical shielding anisotropy despite their formal spherically symmetric 5d106s2 and 5d10 electron configurations. Such a behavior results from the sp-hybridization of the Tl electron wave functions. Strong exchange coupling among the spins of Tl1+ and M3+ ions, which reside in neighboring chains or layers, is observed. Such coupling is realized due to the overlap of the Tl1+ and M3+ electron wave functions across the intervening chalcogen atom. This overlap is the important mechanism in the formation of the valence and conduction bands and determines the electronic structure and properties of the compounds. The long-range indirect nuclear exchange coupling via a chalcogen atom is an analog of the Kramers mechanism of electron spin exchange via a nonmagnetic bridge ion. Recent photoemission spectroscopy studies and band-structure calculations of several aforementioned compounds have confirmed the NMR results on the interchain and interlayer overlap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Müller D., Hahn H.: Z. Anorg. Allg. Chem.438, 258 (1978)

    Article  Google Scholar 

  2. Müller D., Eulenberger G., Hahn H.: Z. Anorg. Allg. Chem.398, 207 (1973)

    Article  Google Scholar 

  3. Ketelaar J.A.A., t’Hart W.H., Moerel M., Polder D.: Z. Kristallogr.101, 396 (1939)

    Google Scholar 

  4. Hahn H., Klinger W.: Z. Anorg. Allg. Chem.260, 110 (1949)

    Google Scholar 

  5. Nakamura K., Kashida S.: J. Phys. Soc. Jpn.62, 3135 (1993)

    Article  ADS  Google Scholar 

  6. Kalkan N., Hanias M.P., Anagnostopoulos A.N.: Mater. Res. Bull.27, 1329 (1992)

    Article  Google Scholar 

  7. Kalkan N., Papadopoulos D., Anagnostopoulos A.N., Spyridelis J.: Mater. Res. Bull.28, 693 (1993)

    Article  Google Scholar 

  8. Hanias M.P., Anagnostopoulos A.N.: Phys. Rev. B47, 4261 (1993)

    Article  ADS  Google Scholar 

  9. Hanias M.P., Anagnostopoulos A.N., Kambas K., Spyridelis J.: Phys. Rev. B43, 4135 (1991)

    Article  ADS  Google Scholar 

  10. Hanias M.P., Kalomiros J.A., Karakotsou Ch., Anagnostopoulos A.N., Spyridelis J.: Phys. Rev. B49, 16994 (1994)

    Article  ADS  Google Scholar 

  11. Hanias M.P., Anagnostopoulos A.N., Kambas K., Spyridelis J.: Physica B160, 154 (1989)

    Article  ADS  Google Scholar 

  12. Abdullaev A.G., Aliev V.K.: Mater. Res. Bull.15, 1361 (1980)

    Article  Google Scholar 

  13. Watzke O., Schneider T., Martienssen W.: Chaos Solitons Fractals11, 1163 (2000)

    Article  Google Scholar 

  14. Gorelik V.S., Agal’tsov A.M., Ibragimov T.D.: J. Appl. Spectrosc.51, 661 (1988)

    Google Scholar 

  15. Ibragimov T.D., Aslanov I.I.: Solid State Commun.123, 339 (2002)

    Article  ADS  Google Scholar 

  16. van Vleck J.H.: Phys. Rev.74, 1168 (1948)

    Article  MATH  ADS  Google Scholar 

  17. Bloembergen N., Rowland T.J.: Phys. Rev.97, 1679 (1955)

    Article  ADS  Google Scholar 

  18. Kholopov E.V., Panich A.M., Moroz N.K., Kriger Yu.G.: Sov. Phys. JETP57, 632 (1983)

    Google Scholar 

  19. Karimov Yu.S., Schegolev I.F.: Sov. Phys. JETF14, 772 (1962)

    Google Scholar 

  20. Avogadro A., Villa M.: Phys. Status Solidi B75, 179 (1976)

    Article  Google Scholar 

  21. Furukawa Y., Kiriyama H.: Chem. Phys. Lett.93, 617 (1982)

    Article  ADS  Google Scholar 

  22. Saito Y.: J. Phys. Soc. Jpn.21, 1072 (1966)

    Article  ADS  Google Scholar 

  23. Panich A.M., Belitskii I.A., Gabuda S.P., Drebushchak V.A., Seretkin Yu.V.: J. Struct. Chem.31, 56 (1990)

    Article  Google Scholar 

  24. Panich A.M., Gasanly N.M.: Phys. Rev. B63, 195201 (2001)

    Article  ADS  Google Scholar 

  25. Panich A.M., Kashida S.: Physica B318, 217 (2002)

    Article  ADS  Google Scholar 

  26. Panich A.M.: Sov. Phys. Solid State31, 1814 (1989)

    Google Scholar 

  27. Carrington A., McLachlan A.D.: Introduction to Magnetic Resonance. New York: Harper & Row 1967.

    Google Scholar 

  28. Abragam A.: The Principles of Nuclear Magnetism. Oxford: Clarendon 1961.

    Google Scholar 

  29. Panich A.M., Kashida S.: J. Phys. Condens. Matter16, 3071 (2004)

    Article  Google Scholar 

  30. panich A.M., Gabuda S.P., Mamedov N.T., Aliev S.N.: Sov. Phys. Solid State29, 2114 (1987)

    Google Scholar 

  31. Kramers H.A.: Physica1, 184 (1934)

    ADS  Google Scholar 

  32. Slichter C.P.: Principles of Magnetic Resonance. Berlin: Springer 1992.

    Google Scholar 

  33. Shimosaka W., Kashida S.: J. Phys. Soc. Japan73, 1532 (2004)

    Article  ADS  Google Scholar 

  34. Okazaki K., Tanaka K., Matsuno J., Fujimori A., Mattheiss L.F., Iida S., Kerimova E., Mamedov N.: Phys. Rev. B64, 045210 (2001)

    Article  ADS  Google Scholar 

  35. Gasanly N.M., Akinoglu B.G., Ellialtioglu S., Laiho R., Bakhyshov A.E.: Physica B192, 371 (1993)

    Article  ADS  Google Scholar 

  36. Panich A.M., Doert T.: Solid State Commun.114, 371 (2000)

    Article  ADS  Google Scholar 

  37. Panich A.M., Teske C.L., Bensch W., Perlov A., Ebert H.: Solid State Commun.131, 201 (2004)

    Article  ADS  Google Scholar 

  38. Gabuda S.P., Kozlova S.G., Davidovich R.L.: Chem. Phys. Lett.263, 253 (1996)

    Article  ADS  Google Scholar 

  39. Clough S., Goldburg W.I.: J. Chem. Phys.45, 4080 (1966)

    Article  ADS  Google Scholar 

  40. Vaughan R.W., Anderson D.H.: J. Chem. Phys.52, 5287 (1970)

    Article  ADS  Google Scholar 

  41. Gabuda S.P., Kozlova S.G., Moroz N.K.: Chem. Phys. Lett.227, 51 (1994)

    Article  ADS  Google Scholar 

  42. Gabuda S.P., Kozlova S.G., Davidovich R.L.: Chem. Phys. Lett.254, 89 (1996)

    Article  ADS  Google Scholar 

  43. Panich A.M., Goren S.D., Frenkel Ben-Yakar L., Gritzner G., Eder M.: Physica C356, 129 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Panich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panich, A.M. Nuclear exchange coupling and electronic structure of low-dimensional semiconductors. Appl. Magn. Reson. 27, 29–39 (2004). https://doi.org/10.1007/BF03166299

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166299

Keywords

Navigation