Skip to main content
Log in

Cycle time as a variable in CRAMPS NMR. Detection of minor impurities in solids to levels of ≤0.01 mol%

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The use of varying multiple-pulse decoupling cycle times in homonuclear dipolar decoupling experiments with combined rotation and multipole-pulse spectroscopy proton nuclear magnetic resonance (NMR) is shown to be capable of quantitatively and qualitatively analyzing amounts of occluded residual liquid solvent, present as saturated solution, in some organic solids crystallized from solution. Lower limits of detection can be 0.01 mol%, as illustrated for the cases of durene,p-hydroxy benzoic acid, and adipic acid crystallized from ethanol, and alanine crystallized from water. Quantitative detection at this level depends upon the phase diagram of the system in question, and the ability to obtain a high-resolution proton NMR spectrum from that portion of the sample consisting of the occluded solvent impurity in the presence of a relatively large proton background from the probe. Determinations of spin diffusion may be used to infer the average size of the mobile domains containing the impurity. The variation of longitudinal relaxation time with temperature may be used as a check on the uniformity of saturated solvent occluded in the system studied. The classical case of using a cooling curve to detect the total amount of liquid protion remaining in the crystal after crystallization is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerstein B.C., Hu J.Z., Ye C., Solum M., Pugmire R., Grant D.M.: Solid State NMR6, 63–72 (1996)

    Article  Google Scholar 

  2. Ding S., McDowell C.A.: J. Magn. Reson. A111, 212–214 (1994); Ding S., McDowell C.A.: J. Magn. Reson. A115, 141–144 (1995)

    Article  Google Scholar 

  3. Ding, S., McDowell C.A.: J. Magn. Reson.120, 261–263 (1996)

    Article  Google Scholar 

  4. Ding, S., McDowell C.A.: J. Phys. Condens. Matter11, L199-L204 (1999)

    Article  ADS  Google Scholar 

  5. Gerstein B.C., Kimura H.: Magn. Reson. Chem.39, 630–632 (2001)

    Article  Google Scholar 

  6. Taylor R.E., Pembleton R.G., Ryan L.M., Gerstein B.C.: J. Chem. Phys.66, 361–361 (1977)

    Article  ADS  Google Scholar 

  7. Ripmeester J.: Mol. Cryst. Liq. Cryst.64, 133–138 (1981)

    Article  Google Scholar 

  8. Lee M., Goldburg W.I.: Phys. Rev.140, 1261–1271 (1965)

    Article  ADS  Google Scholar 

  9. Gerstein B.C. in: High Resolution NMR Spectroscopy of Synthetic Polymers in Bulk (Komoroski R., ed.), chapt. 9. New York: VCH Publishers Inc. 1986.

    Google Scholar 

  10. Gerstein B.C., Dubowski C.R.: Transient Techniques in NMR of Solids, chapt. 5. New York: Wiley 1986.

    Google Scholar 

  11. Vinogradov E., Madhu P.K., Vega S.: Chem. Phys. Lett.314, 443–450 (1999)

    Article  ADS  Google Scholar 

  12. Powles J.G., Strange J.: Proc. Phys. Soc. Lond.82, 6–15 (1963)

    Article  Google Scholar 

  13. Lowe I.J.: Bull. Am. Phys. Soc.2, 344 (1957)

    Google Scholar 

  14. Waugh J.S., Huber L.M., Haeberlen U.: Phys. Rev. Lett.20, 180–182 (1968)

    Article  ADS  Google Scholar 

  15. Ostroff E.D., Waugh J.S.: Phys. Rev. Lett.16, 1097–1098 (1966)

    Article  ADS  Google Scholar 

  16. Mansfield P.: Phys. Rev.137, 961–974 (1965)

    Article  ADS  Google Scholar 

  17. Rhim W.K., Eleman D.D., Vaughan R.W.: J. Chem. Phys.59, 1772–1777 (1973)

    Article  ADS  Google Scholar 

  18. Burum D., Rhim W.K.: J. Chem. Phys.71, 944–956 (1979)

    Article  ADS  Google Scholar 

  19. Madhu P.K., Zhao X., Levitt M.: Chem. Phys. Lett.346, 142–148 (2001)

    Article  ADS  Google Scholar 

  20. Lesage A., Charmont P., Hediger S., Sakellariou D., Ensley L. in: Proceedings of the 42nd Rocky Mountain Conference on Analytical Chemistry, Denver, Colorado, July 30 – August 3, 2000, nr. 188. Denver CO: American Chemical Society 2000.

    Google Scholar 

  21. van Rossum B.-J., Forster H., de Groot H.J.M.: J. Magn. Reson.124, 516–519 (1997)

    Article  ADS  Google Scholar 

  22. Schnabel B., Habenreisser U., Scheler G., Miller R. in: Magnetic resonance and related phenomena: Proceedings of the 19th Congress Ampere, Heidelberg, September 1976 (Brunner H., Hausser K.H., Schweitzer D., eds.), p. 441. Heidelberg: Groupement Ampere 1976.

    Google Scholar 

  23. VanderHart D.L. in: Encyclopedia of NMR (Grant D.M., Harris R.K., eds.), vol. 5, pp. 2938–2946. Chichester: Wiley 1996.

    Google Scholar 

  24. VanderHart D.L., Earl W.L., Garroway A.N.: J. Magn. Reson.44, 361–401 (1981)

    Google Scholar 

  25. Gerstein B.C. in: Encyclopedia of NMR (Grant D.M., Harris R.K., eds.), vol. 5., pp. 3144–3154. Chichester: Wiley 1996.

    Google Scholar 

  26. Goldman M., Shen L.: Phys. Rev.144, 321–331 (1966)

    Article  ADS  Google Scholar 

  27. Cheung T.T.P. in: Encyclopedia of NMR (Grant D.M., Harris R.K., eds.), vol. 5., pp. 4518–4524. Chichester: Wiley 1996.

    Google Scholar 

  28. Kataoka H., Takeda S., Nakamura N.: Appl. Magn. Reson.11, 553–555 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerstein, B.C., Kimura, H. Cycle time as a variable in CRAMPS NMR. Detection of minor impurities in solids to levels of ≤0.01 mol%. Appl. Magn. Reson. 27, 5–18 (2004). https://doi.org/10.1007/BF03166297

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166297

Keywords

Navigation