Spin-labeled photosynthetic reaction centers fromRhodobacter sphaeroides studied by electron paramagnetic resonance spectroscopy and molecular dynamics simulations

  • P. Gajula
  • I. V. Borovykh
  • C. Beier
  • T. Shkuropatova
  • P. Gast
  • H. -J. Steinhoff


A new strategy has been applied that combines molecular dynamics (MD) simulations and electron paramagnetic resonance (EPR) spectroscopy to study the structure and conformational dynamics of the spin-labeled photosynthetic reaction center (RC) ofRhodobacter sphaeroides. This protein serves here as a model system to demonstrate the applicability of this new methodology. The RC contains five native cysteines and EPR experiments show that only one cysteine, located on the H subunit, is accessible for spin labeling. The EPR spectra calculated from MD simulation trajectories of spin labels bound to the native cysteines C156 and C234 in subunit H reveal that only the spin label side chain at position 156 provides a spectrum which agrees with the experimental EPR spectrum.


Electron Paramagnetic Resonance Molecular Dynamic Simulation Electron Paramagnetic Resonance Spectrum Nitroxide Electron Paramagnetic Resonance Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Feher G.: Photosynth. Res.55, 1–40 (1998)CrossRefGoogle Scholar
  2. 2.
    Hu X., Schulten K.: Phys. Today50, 28–34 (1997)CrossRefGoogle Scholar
  3. 3.
    Gunner M.R.: Curr. Top. Bioenerg.16, 319–367 (1991)Google Scholar
  4. 4.
    Feher G.: Annu. Rev. Biophys. Biomol. Struct.31, 1–44 (2002)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Hoff A.J., Deisenhofer J.: J. Phys. Rep.287, 1–247 (1997)CrossRefADSGoogle Scholar
  6. 6.
    Palazzo G., Mallardi A., Hochkoeppler A., Cordone L., Venturoli G.: Biophys. J.82, 558–568 (2002)CrossRefGoogle Scholar
  7. 7.
    Paschenko V.Z., Knox P.P., Chamorovsky S.K., Krasilnikov P.M., Mamedov M.D., Semenov A.Y., Zakharova N.I., Renger G., Rubin A.B.: Bioelectrochemistry,53, 233–241 (2001)CrossRefGoogle Scholar
  8. 8.
    McMahon B.H., Muller J.D., Wraight C.A., Nienhaus G.U.: Biophys. J.74, 2567–2587 (1998)CrossRefADSGoogle Scholar
  9. 9.
    Kriegl J.M., Forster F.K., Nienhaus G.U.: Biophys. J.85, 1851–1870 (2003)CrossRefGoogle Scholar
  10. 10.
    Kleinfeld D., Okamura M.Y., Feher G.: Biochemistry23, 5780–5786 (1984)CrossRefGoogle Scholar
  11. 11.
    Xu Q., Gunner M.R.: Biochemistry41, 2694–2701 (2002)CrossRefGoogle Scholar
  12. 12.
    Levanon H., Möbius K.: Annu. Rev. Biophys. Biomol. Struct.26, 495–540 (1997)CrossRefGoogle Scholar
  13. 13.
    Borovykh I.V., Ceola S., Gajula P., Gast P., Steinhoff H.-J., Huber M.: J. Magn. Reson.180, 178–185 (2006)CrossRefADSGoogle Scholar
  14. 14.
    Kuglstatter A., Ermier U., Michel H., Baciou L., Fritzsch G.: Biochemistry40, 4253–4260 (2001)CrossRefGoogle Scholar
  15. 15.
    Rabenstein B., Ullmann G.M., Knapp E.W.: Biochemistry39, 10487–10496 (2000)CrossRefGoogle Scholar
  16. 16.
    Stowell M.H.B., McPhillips T.M., Rees D.C., Soltis S.M., Abresch E., Feher G.: Science276, 812–816 (1997)CrossRefGoogle Scholar
  17. 17.
    Sun J.Z., Voss J., Hubbell W.L., Kaback H.R.: Biochemistry38, 3100–3105 (1999)CrossRefGoogle Scholar
  18. 18.
    Steinhoff H.-J., Mueller M., Beier C., Pfeiffer M.: J. Mol. Liq.84, 17–21 (2000)CrossRefGoogle Scholar
  19. 19.
    Fu Z., Aronoff S.E., Backer J.M., Gerfen G.J.: Proc. Natl. Acad. Sci. USA100, 3275–3280 (2003)CrossRefADSGoogle Scholar
  20. 20.
    Lietzow M.A., Hubbell W.L.: Biochemistry43, 3137–3151 (2004)CrossRefGoogle Scholar
  21. 21.
    Mchaourab H.S., Perozo E. in: Distance Measurements in Biological Systems (Berliner L.J., Eaton S.S., Eaton G.R., eds.), vol. 19, pp. 185–238. New York: Academic Press 2000.Google Scholar
  22. 22.
    Steinhoff H.-J., Hubbell W.L.: Biophys. J.71, 2201–2212 (1996)CrossRefGoogle Scholar
  23. 23.
    Solov’ev A.A., Erokhin Yu.E.: Mol. Biol. (Moscow)19, 1100–1107 (1984)Google Scholar
  24. 24.
    Osvath S., Larson W., Wraight C.A.: Biochim. Biophys. Acta1505, 238–247 (2001)CrossRefGoogle Scholar
  25. 25.
    Poluektov O.G., Utschig L.M., Dalosto S., Thurnauer M.C.: J. Phys. Chem. B107, 6239–6244 (2003)CrossRefGoogle Scholar
  26. 26.
    Feher G., Okamura M.Y. in: The Photosynthetic Bacteria (Clayton R.K., Sistrom W.R., eds.), pp. 349–386. New York: Plenum 1978.Google Scholar
  27. 27.
    Debus R.J., Feher G., Okamura M.Y.: Biochemistry24, 2488–2500 (1985)CrossRefGoogle Scholar
  28. 28.
    Berliner L.J., Grunwald J., Hankovszky H.O., Hideg K.: Anal. Biochem.119, 450–455 (1982)CrossRefGoogle Scholar
  29. 29.
    Straley S.C., Parson W.W., Mauzerall D.C., Clayton R.K.: Biochim. Biophys. Acta305, 597–609 (1973)CrossRefGoogle Scholar
  30. 30.
    Beier C., Steinhoff H.-J.: Biophys. J.91, 2647–2664 (2006)CrossRefADSGoogle Scholar
  31. 31.
    Robinson B.H., Slutsky L.J., Auteri F.P.: J. Chem. Phys.96, 2609–2616 (1992)CrossRefADSGoogle Scholar
  32. 32.
    Berendsen H.J.C., van der Spoel D., van Drunen R.: Comput. Phys. Commun.91, 43–56 (1995)CrossRefADSGoogle Scholar
  33. 33.
    Lindahl E., Hess B., van der Spoel D.: J. Mol. Model.7, 306–317 (2001)Google Scholar
  34. 34.
    Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E.: Nucleic Acids Res.28, 235–242 (2000)CrossRefGoogle Scholar
  35. 35.
    Scheer H., Struck A. in: The Photosynthetic Reaction Center (Deisenhofer J., Norris J.R., eds.), vol. 1, pp. 157–192. San Diego: Academic Press 1993.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • P. Gajula
    • 1
  • I. V. Borovykh
    • 1
  • C. Beier
    • 1
  • T. Shkuropatova
    • 2
  • P. Gast
    • 2
  • H. -J. Steinhoff
    • 1
  1. 1.Department of PhysicsUniversity of OsnabrückOsnabrückGermany
  2. 2.Department of Biophysics, Huygens LaboratoryLeiden UniversityLeidenThe Netherlands

Personalised recommendations