Skip to main content
Log in

Changes in metal specificity due to iron ligand substitutions in reaction centers fromRhodobacter sphaeroides

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Bacterial reaction centers have a single nonheme iron that is located between two bound quinones, QA and QB, which are the primary and secondary electron acceptors during photosynthesis, respectively. InRhodobacter sphaeroides, the iron is coordinated by four nitrogen atoms, contributed by histidines at L190, L230, M219, and M266, and two oxygen atoms, contributed by Glu at M234. The roles of these ligands in determining the metal-binding specificity and electron transfer properties of the quinones were investigated by mutagenesis. Each of the four His ligands was changed to Glu, Gln, and Cys, whereas Glu was changed to His, Gln, Cys, and Asp. All mutants supported photosynthetic growth except for those with substitutions of Glu or Cys at L190 or M219. The metal specificity of isolated mutant RCs was determined by measurements using atomic absorption and 35 GHz electron paramagnetic resonance spectroscopy. The M234 mutants had a lesser iron specificity than the wild type with a mole fraction of 0.7 to 0.8 iron but retained a total metal content of 1.0. All His mutants had an even lower iron content with mole fractions of 0.04 to 0.16. The His to Cys at M266 mutant had a significantly greater amount of bound zinc that was further enhanced when the strain was grown in zinc-supplemented media. The charge recombination rates from Q −.B , which ranged from 0.5 to 1 s−1 in the mutants, were comparable to the 1 s−1 value for the wild type. Charge recombination from Q −.A showed complex kinetics, with rates of 15 to 30 s−1 for the L190, L230, and M234 mutants and 200 s−1 for the M266 mutants compared with 8 s−1 for the wild type. The faster rates in the mutants most likely reflected a smaller free energy difference between Q −.A and Φ A , a nearby bacteriopheophytin, with the smaller energy difference facilitating indirect recombination. All of the mutants transferred electrons to the secondary quinone, with rates (1200 to 4700 s−1) comparable to that of the native (3700 s−1). The data demonstrate that neither the ligands nor the bound metal play a critical role in the electron transfer processes at the acceptor side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen J.P., Feher G., Yeates T.O., Komiya H., Rees D.C.: Proc. Natl. Acad. Sci. USA84, 6162–6166 (1987)

    Article  ADS  Google Scholar 

  2. Michel H., Deisenhofer J.: Biochemistry27, 1–7 (1988)

    Article  Google Scholar 

  3. Feher G., Allen J.P., Okamura M.Y., Rees D.C.: Nature339, 111–116 (1989)

    Article  ADS  Google Scholar 

  4. Chang C.-H., El-Kabbani O., Tiede D., Norris J., Schiffer M.: Biochemistry30, 5352–5360 (1991)

    Article  Google Scholar 

  5. Boso B., Debrunner P., Okamura M.Y., Feher G.: Biochim. Biophys. Acta638, 173–177 (1981)

    Article  Google Scholar 

  6. Eisenberger P., Okamura M.Y., Feher G.: Biophys. J.37, 523–538 (1982)

    Article  ADS  Google Scholar 

  7. Bunker G., Stern E.A., Blankenship R.E., Parson W.W.: Biophys J.37, 539–551 (1982)

    Article  ADS  Google Scholar 

  8. Butler W.F., Calvo R., Fredkin D.R., Isaacson R.A., Okamura M.Y., Feher G.: Biophys. J.45, 947–973 (1984)

    Article  Google Scholar 

  9. Dismukes C.G., Frank H.A., Friesner R., Sauer K.: Biochim. Biophys. Acta764, 253–271 (1984)

    Article  Google Scholar 

  10. Beijer C. Rutherford A.W.: Biochim. Biophys. Acta890, 169–178 (1987)

    Article  Google Scholar 

  11. Debus R.J., Feher G., Okamura M.Y.: Biochemistry25, 2276–2287 (1986)

    Article  Google Scholar 

  12. Buchanan S.K., Dismukes G.C., Prince R.C.: FEBS Lett.229, 16–20 (1988)

    Article  Google Scholar 

  13. Liu B.-L., Yang L.-H., Hoff A.J.: Photosynth. Res.28, 51–58 (1991)

    Google Scholar 

  14. Michel H., Weyer K.A., Gruenberg H., Lottspeich F.: EMBO J.4, 1667–1672 (1985)

    Google Scholar 

  15. Allen J.P., Feher G., Yeates T.O., Komiya H., Rees D.C.: Proc. Natl. Acad. Sci. USA85, 8487–8491 (1988)

    Article  ADS  Google Scholar 

  16. Komiya H., Yeates T.O., Rees D.C., Allen J.P., Feher G.: Proc. Natl. Acad. Sci. USA85, 9012–9016 (1988)

    Article  ADS  Google Scholar 

  17. Ibers J.A., Holm R.H.: Science209, 223–235 (1980)

    Article  ADS  Google Scholar 

  18. Harrison P.M. (ed.): Metalloproteins. Berlin: Verlag Chemie 1985.

    Google Scholar 

  19. Williams J.C., Steiner L.A., Ogden R.C., Simon M.I., Feher G.: Proc. Natl. Acad. Sci. USA80, 6505–6509 (1983)

    Article  ADS  Google Scholar 

  20. Paddock M.L., Rongey S.H., Feher G., Okamura M.Y.: Proc. Natl. Acad. Sci. USA86, 6602–6606 (1989)

    Article  ADS  Google Scholar 

  21. Yanisch-Perron C., Vieira J., Messing J.: Gene33, 103–119 (1985)

    Article  Google Scholar 

  22. Sayers J.R., Schmidt W., Eckstein F.: Nucleic Acids Res.16, 791–802 (1988)

    Article  Google Scholar 

  23. Ditta G., Schmidhauser T., Yakobson E., Lu P., Liang X.-W., Finlay D.R., Guiney D., Helinski D.R.: Plasmid13, 149–153 (1985)

    Article  Google Scholar 

  24. Prentki P., Krisch H.M.: Gene29, 303–313 (1984)

    Article  Google Scholar 

  25. Simon R., Priefer U., Pühler A.: Biotechnology1, 784–791 (1983)

    Article  Google Scholar 

  26. Bartsch R.G., Ambler R.P., Meyer T.E., Cusanovich M.A.: Arch. Biochem. Biophys.271, 433–440 (1989)

    Article  Google Scholar 

  27. Feher G., Okamura M.Y. in: The Photosynthetic Bacteria (Clayton R.K., Sistrom W.R., eds.), pp. 349–386. New York: Plenum 1978.

    Google Scholar 

  28. Isaacson R.A., Lendzian F., Abresch E.C., Lubitz W., Feher G.: Biophys. J.69, 311–322 (1995)

    Article  ADS  Google Scholar 

  29. Kleinfeld D., Okamura M.Y., Feher G.: Biochim. Biophys. Acta766, 126–140 (1984)

    Article  Google Scholar 

  30. Chirino A.J., Lous E.J., Huber M., Allen J.P., Schenck C.C., Paddock M.L., Feher G., Rees D.C.: Biochemistry33, 4584–4593 (1994)

    Article  Google Scholar 

  31. Utschig L.M., Thurnauer M.C., Tiede D.M., Poluektov O.G.: Biochemistry44, 14131–14142 (2005)

    Article  Google Scholar 

  32. Paddock M.L., Grainge M.S., Feher G., Okamura M.Y.: Proc. Natl. Acad. Sci. USA96, 6183–6188 (1999)

    Article  ADS  Google Scholar 

  33. Axelrod H.L., Abresch E.C., Paddock M.L., Okamura M.Y., Feher G.: Proc. Natl. Acad. Sci. USA97, 1542–1547 (2000)

    Article  ADS  Google Scholar 

  34. Lubitz W., Feher G.: Appl. Magn. Reson.17, 1–48 (1999)

    Article  Google Scholar 

  35. Gardner A.T., Zech S.G., MacMillan F., Käss H., Bittl R., Schlodder E., Lendzian F., Lubitz W.: Biochemistry38, 11773–11787 (1999)

    Article  Google Scholar 

  36. Calvo R., Abresch E.C., Bittl R., Feher G., Hofbauer W., Isaacson R.A., Lubitz W., Okamura M.Y., Paddock M.L.: J. Am. Chem. Soc.122, 7327–7341 (2000)

    Article  Google Scholar 

  37. Schnegg A., Fuhs M., Rohrer M., Lubitz W., Prisner T.F., Möbius K.: J. Phys. Chem. B106, 9454–9462 (2002)

    Article  Google Scholar 

  38. Chen L.X., Utschig L.M., Schlesselman S.L., Tiede D.M.: J. Phys. Chem. B108, 3912–3924 (2004)

    Article  Google Scholar 

  39. Utschig L.M., Ohigashi Y., Thurnauer M.C., Tiede D.M.: Biochemistry37, 8278–8281 (1998)

    Article  Google Scholar 

  40. Takahashi E., Wraight C.A.: Biochemistry31, 855–866 (1992)

    Article  Google Scholar 

  41. Labahn A., Paddock M.L., McPherson P.H., Okamura M.Y., Feher G.: J. Phys. Chem.98, 3417–3423 (1994)

    Article  Google Scholar 

  42. Feher G., Arno T.R., Okamura M.Y. in: The Photosynthetic Bacterial Reaction Center (Breton J., Vermeglio A., eds.), pp. 271–287. New York: Plenum 1988.

    Google Scholar 

  43. Allen J.P., Williams J.C., Graige M.S., Paddock M.L., Labahn A., Feher G., Okamura M.Y.: Photosynth. Res.55, 227–233 (1998)

    Article  Google Scholar 

  44. Wang X., Cao J., Maroti P., Stilz H.U., Finkele U., Lauterwasse C., Zinth W., Oesterhelt D., Govindjee, Wraight C.A.: Biochim. Biophys. Acta1100, 1–8 (1992)

    Article  Google Scholar 

  45. Di Donato M., Correa A., Peluso A.: Chem. Phys. Lett.369, 549–555 (2003)

    Article  ADS  Google Scholar 

  46. Ishikita H., Knapp E.W.: FEBS Lett.580, 4567–4570 (2006)

    Article  Google Scholar 

  47. Ito H., Nakatsuji H.: J. Comput. Chem.22, 265–272 (2001)

    Article  Google Scholar 

  48. Remy A., Gerwert K.: Nat. Struct. Biol.10, 637–644 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, J.C., Paddock, M.L., Way, Y.P. et al. Changes in metal specificity due to iron ligand substitutions in reaction centers fromRhodobacter sphaeroides . Appl. Magn. Reson. 31, 45–58 (2007). https://doi.org/10.1007/BF03166247

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166247

Keywords

Navigation