Skip to main content
Log in

EPR-detected photoinduced electron transfer in three structurally related molecular triads

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

A comparative electron paramagnetic resonance (EPR) study has been performed on a series of structurally related molecular triads which undergo photoinduced electron transfer and differ one from the other in terms of the acceptor or donor moieties. The molecular triads, C-P-C60, TTF-P-C60 and C-P-PF, share the same free-base, tetraarylporphyrin (P) as the primary electron donor, which after light excitation initiates the electron transfer process, but differ either in terms of the electron acceptor (fullerene derivative, C60, versus fluorinated free-base porphyrin, PF), or in terms of the final electron donor (carotenoid polyene, C, versus tetrathiafulvalene, TTF). All these molecular triads can be considered artificial photosynthetic reaction centers in their ability to mimic several key properties of the reaction center primary photochemistry. Photoinduced charge separation and recombination have been followed by time-resolved EPR in a glass of 2-methyltetrahydrofuran and in the nematic phase of the uniaxial liquid crystal E-7. All the triads undergo photoinduced electron transfer, with the generation of charge-separated states in both the low-dielectric environment of the 2-methyl-tetrahydrofuran glass and in anisotropic E-7 medium. Different photochemical pathways have been recognized depending on the specific donor and acceptor moieties constituting the molecular triads. In the presence of the tetrathiafulvalene electron donor singlet- and triplet-initiated electron transfer routes are concurrently active. Recombination to the low-lying carotenoid triplet state occurs in the carotene-based triads, while singlet recombination is the only active route for the TTF-P-C60 triad, where a low-lying triplet state is lacking. Long-lived charge separation has been observed in the case of TTF-P-C60: about 8 μs for the singlet-born radical pair in the glassy isotropic matrix and about 7 μs for the triplet-born radical pair in the nematic phase of E-7. For all the molecular triads, a weak exchange interaction (J≊1 G) between the electrons in the final spin-correlated radical pair has been evaluated by simulation of the EPR spectra, providing evidence for superexchange electronic interactions mediated by the tetraarylporphyrin bridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wasielewski M.R.: Chem. Rev.92, 435–461 (1992)

    Article  Google Scholar 

  2. Kurreck H., Huber M.: Angew. Chem. Int. Ed. Engl.34, 849–866 (1995)

    Article  Google Scholar 

  3. Gust D., Moore T.A.: The Porphyrin Handbook, vol. 8, p. 153. New York: Academic Press 1999.

    Google Scholar 

  4. Gust D., Moore A.L.: Acc. Chem. Res.34, 40–48 (2001)

    Article  Google Scholar 

  5. Moore T.A., Moore A.L., Gust D.: Philos. Trans. R. Soc. Lond. B357, 1481–1498 (2002)

    Article  Google Scholar 

  6. Imahori H., Sakata Y.: Adv. Mater.9, 537–546 (1997)

    Article  Google Scholar 

  7. Liddell P.A., Kuciauskas D., Sumida J.P., Nash B., Nguyen D., Moore A.L., Moore T.A., Gust D.: J. Am. Chem. Soc.119, 1400–1405 (1997)

    Article  Google Scholar 

  8. Kuciauskas D., Liddell P.A., Lin S., Johnson T.E., Weghorn S.J., Lindsey J.S., Moore A.L., Moore T.A., Gust D.: J. Am. Chem. Soc.121, 8604–8614 (1999)

    Article  Google Scholar 

  9. Guldi D. M.: Pure Appl. Chem.75, 1069–1075 (2003)

    Article  Google Scholar 

  10. Kuciauskas D., Liddell P.A., Lin S., Stone S.G., Moore A.L., Moore T.A., Gust D.: J. Phys. Chem. B104, 4307–4321 (2000)

    Article  Google Scholar 

  11. Imahori H., Yamada H., Guldi D. M., Endo Y., Shimomura A., Kundu S., Yamada K., Okada T., Sakata Y., Fukuzumi S.: Angew. Chem. Int. Ed.41, 2344–2347 (2002)

    Article  Google Scholar 

  12. Liddell P.A., Sumida J. P., Machperson A. N., Noss L., Seely G. R., Clark K. N., Moore A. L., Moore T.A., Gust D.: Photochem. Photobiol.60, 537–541 (1994)

    Article  Google Scholar 

  13. Carbonera D., Di Valentin M., Corvaja C., Agostini G., Giacometti G., Liddell P.A., Kuciauskas D., Moore A.L., Moore T.A., Gust D.: J. Am. Chem. Soc.120, 4398–4405 (1998)

    Article  Google Scholar 

  14. Kuciauskas D., Liddell P.A., Moore A.L., Moore T.A., Gust D.: J. Am. Chem. Soc.120, 10880–10886 (1998)

    Article  Google Scholar 

  15. Gust D., Moore T.A., Moore A.L., Kuciauskas D., Liddell P.A., Halbert B.D.: J. Photochem. Photobiol. B43, 209–216 (1998)

    Article  Google Scholar 

  16. Bahr J.L., Kuciauskas D., Liddell P.A., Moore A.L., Moore T.A., Gust D.: Photochem. Photobiol.72, 598–611 (2000)

    Article  Google Scholar 

  17. Di Valentin M., Bisol A., Giacometti G., Carbonera D., Agostini G., Liddell P.A., Moore A.L., Moore T.A., Gust D.: Mol. Cryst. Liq. Cryst.394, 19–30 (2003)

    Article  Google Scholar 

  18. Di Valentin M., Bisol A., Agostini G., Fuhs M., Liddell P.A., Moore A.L., Moore T.A., Gust D., Carbonera D.: J. Am. Chem. Soc.126, 17074–17086 (2004)

    Article  Google Scholar 

  19. Di Valentin M., Bisol A., Agostini G., Carbonera D.: J. Chem. Inf. Model.45, 1580–1588 (2005)

    Article  Google Scholar 

  20. Strachan J.P., Gentemann S., Seth J., Kalsbeck W.A., Lindsey J.S., Holten D., Bocian D.F.: J. Am. Chem. Soc.119, 11191–11201 (1997)

    Article  Google Scholar 

  21. Yang S.I., Seth J., Balasubramanian T., Kim D., Lindsey J.S., Holten D., Bocian D.F.: J. Am. Chem. Soc.121, 4008–4018 (1999)

    Article  Google Scholar 

  22. Kuciauskas D., Liddell P.A., Hung S.C., Stone S.G., Seely G.R., Moore A.L., Moore T.A., Gust D.: J. Phys. Chem. B101, 429–440 (1997)

    Article  Google Scholar 

  23. Noss L., Liddell P.A., Moore A.L., Moore T.A., Gust D.: J. Phys. Chem. B101, 458–465 (1997)

    Article  Google Scholar 

  24. Liddell P.A., Kodis G., de la Garza L., Bahr J.L., Moore A.L., Moore T.A., Gust D.: Helv. Chim. Acta84, 2765–2783 (2001)

    Article  Google Scholar 

  25. Kodis G., Liddell P.A., de la Garza L., Moore A.L., Moore T.A., Gust D.: J. Mater. Chem.12, 2100–2108 (2002)

    Article  Google Scholar 

  26. Bryce M.R.: Adv. Mater.11, 11–23 (1999)

    Article  Google Scholar 

  27. Lewis J.E., Moore T.A., Benin D., Gust D., Nicodem D., Nonell S.: Photochem. Photobiol.59S, 35 (1994)

    Google Scholar 

  28. Pou-Amérigo R., Orti E., Merchán M., Rubio M., Viruela P. M.: J. Phys. Chem. A106, 631–640 (2002)

    Article  Google Scholar 

  29. De Graziano J.M.M., Alisdar N., Liddell P.A., Noss L., Sumida J.P., Seely G.R., Lewis, J.E., Moore A.L., Moore T.A., Gust D.: New J. Chem.20, 839–851 (1996)

    Google Scholar 

  30. Willert A., Bachilo S., Rempel U., Shulga A., Zenkevich E., von Borczyskowski C.: J. Photochem. Photobiol. A: Chem.126, 99–109 (1999)

    Article  Google Scholar 

  31. Tsuchiya S.: J. Am. Chem. Soc.121, 48–53 (1999)

    Article  Google Scholar 

  32. Gould S., Kodis G., Palacios R.E., de la Garza L., Gust D., Moore T.A., Moore A.L.: J. Phys. Chem. B108, 10566–10580 (2004)

    Article  Google Scholar 

  33. Palacios R. E., Kodis G., Gould S. L., de la Garza L., Brune A., Gust D., Moore T. A., Moore A. L.: Chem Phys Chem6, 2359–2370 (2005)

    Google Scholar 

  34. Di Valentin M., Bisol A., Agostini G., Giacometti G., Liddell P.A., Kodis G., Moore A.L., Moore T.A., Gust D., Carbonera D.: J. Phys. Chem. B109, 14401–14409 (2005)

    Article  Google Scholar 

  35. Di Valentin M.B., Arianna Agostini G., Moore A. L., Moore T.A., Gust D., Palacios R., Gould S., Carbonera D.: Mol. Phys.104, 1595–1607 (2006)

    Article  ADS  Google Scholar 

  36. Anderson P.W.: Phys. Rev.115, 2–13 (1959)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Volk M., Häberle T., Feick R., Ogrodnik A., Michel-Beyerle M. E.: J. Phys. Chem.97, 9831–9836 (1993)

    Article  Google Scholar 

  38. Calvo R., Abresch E.C., Bittl R., Feher G., Hofbauer W., Isaacson R.A., Lubitz W., Okamura M. Y., Paddock M.L.: J. Am. Chem. Soc.122, 7327–7341 (2000)

    Article  Google Scholar 

  39. Weiss E.A., Ratner M.A., Wasielewski M.R.: J. Phys. Chem. A107, 3639–3647 (2003)

    Article  Google Scholar 

  40. Fuhs M., Elger G., Osintsev A., Popov A., Kurreck H., Möbius K.: Mol. Phys.98, 1025–1040 (2000)

    Article  ADS  Google Scholar 

  41. Gonen O., Levanon H.: J. Chem. Phys.84, 4132–4141 (1986)

    Article  ADS  Google Scholar 

  42. Grant J.L., Kramer V.J., Ding R., Kispert L.D.: J. Am. Chem. Soc.110, 2151–2157 (1988)

    Article  Google Scholar 

  43. Lakshmi K.V., Reifler M.J., Brudvig G.W., Poluektov O.G., Wagner A.M., Thurnauer M.C.: J. Phys. Chem. B104, 10445–10448 (2000)

    Article  Google Scholar 

  44. Lexa D., Reix M.: J. Chem. Phys.71, 517–524 (1974)

    Google Scholar 

  45. Felton R.H., Linschitz H.: J. Am. Chem. Soc.88, 1113–1116 (1966)

    Article  Google Scholar 

  46. Hore P.J. in Advanced EPR (Hoff A.J., ed.), p. 413. Amsterdam: Elsevier 1989.

    Google Scholar 

  47. Walsh W.M.J., Rupp L.W., Wudl F., Kaplan M.L., Schfer D.E., Thomas G.A., Gemmer R.: Solid State Commun.33, 413–416 (1980)

    Article  ADS  Google Scholar 

  48. Sugano T., Saito G., Kinoshita M.: Phys. Rev. B34, 117–125 (1986)

    Article  ADS  Google Scholar 

  49. Brustolon M., Zoleo A., Agostini G., Maggini M.: J. Phys. Chem. A102, 6331–6339 (1998)

    Article  Google Scholar 

  50. Zoleo A., Maniero A.L., Prato M., Severin M.G., Brunel L.C., Kordatos K., Brustolon M.: J. Phys. Chem. A104, 9853–9863 (2000)

    Article  Google Scholar 

  51. Amashukeli X., Gruhn N.E., Lichtenberger D.L., Winkler J.R., Gray H.B.: J. Am. Chem. Soc.126, 15566–15571 (2004)

    Article  Google Scholar 

  52. Hasharoni K., Levanon H., von Gersdorff J., Kurreck H., Möbius K.: J. Chem. Phys.98, 2916–2926 (1993)

    Article  ADS  Google Scholar 

  53. Levanon H., Möbius K.: Annu. Rev. Biophys. Biomol. Struct.26, 495–540 (1997)

    Article  Google Scholar 

  54. Shaakov S., Galili T., Stavitski E., Levanon H., Lukas A., Wasielewski M.R.: J. Am. Chem. Soc.125, 6563–6572 (2003)

    Article  Google Scholar 

  55. Galili T., Regev A., Levanon H., Schuster D.I., Guldi D.M.: J. Phys. Chem. A.108, 10632–10639 (2004)

    Article  Google Scholar 

  56. Hasharoni K., Levanon H.: J. Phys. Chem.99, 4875–4878 (1995)

    Article  Google Scholar 

  57. Herring C., Flicker M.: Phys. Rev.134, A362-A366 (1964)

    Article  ADS  Google Scholar 

  58. van der Est A., Fuechsle G., Stehlik D., Wasielewski M.R.: Appl. Magn. Reson.13, 317–335 (1997)

    Article  Google Scholar 

  59. Guldi D.M., Luo C., Da Ros T., Bosi S., Prato M.: Chem. Commun.20, 2320–2321 (2002)

    Article  Google Scholar 

  60. Imahori H., Tkachenko N.V., Vehmanen V., Tamaki K., Lemmetyinen H., Sakata Y., Fukuzumi S.: J. Phys. Chem. A105, 1750–1756 (2001)

    Article  Google Scholar 

  61. Hoff A.J., Deisenhofer J.: Phys. Rep.287, 195–208 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Di Valentin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Valentin, M., Bisol, A., Agostini, G. et al. EPR-detected photoinduced electron transfer in three structurally related molecular triads. Appl. Magn. Reson. 30, 555–576 (2006). https://doi.org/10.1007/BF03166218

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166218

Keywords

Navigation