Skip to main content
Log in

Quantitative characterization of the Mn2+ complexes of ADP and ATPγS by W-band ENDOR

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

W-band (95 GHz) pulsed electron nuclear double resonance (ENDOR) measurements were carried out to determine quantitatively the first coordination shell of Mn2+ with ADP and ATPγS. The intensity of the ENDOR effect was used for counting the number of equivalent phosphate oxygens and water ligands. Titration curves for determining the binding constant of Mn2+. ADP were obtained using the intensity of the X-band EPR spectrum and the31P ENDOR effect. Both curves gave the same binding constant showing that phosphate ligand counting is plausible, provided that an appropriate reference is available. The comparison of the31P ENDOR effect of the 1:1 ADP and ATPγS complexes shows that two phosphates are coordinated in both; while in ADP they are equivalent, in ATPγS they are slightly different. The reference system for water ligand counting was Mn(H2O) 2+6 in a H2O-D2O mixture. The results show a smaller error for the2H ENDOR effect, compared to the1H ENDOR effect. Unlike the31P ENDOR effect, the1H ENDOR effect dependence on [ADP] in the titration experiments showed that it is sensitive to variations in the zero-field splitting, which in turn alters the contributions of transitions other than the ‖−1/2>↔‖1/2>. This results in a larger error in the determination of the number of water ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reed G.H., Poyner R.R. in: Manganese and Its Role in Biological Processes. Metal Ions in Biological Systems, vol. 37 (Sigel A., Sigel H., eds.), pp. 183–207. New York: Marcel Dekker 2000.

    Google Scholar 

  2. Petersen J., Gessner C., Fisher A., Lowe D.J., Lubitz W.: Biochem. J.391, 527–539 (2005)

    Article  Google Scholar 

  3. Tan X., Poyner R., Scholes C.P., Reed G.H.: Biochemistry32, 7799–7810 (1993)

    Article  Google Scholar 

  4. Zoleo A., Contessi S., Lippe G., Pinato L., Brustolon M., Brunel L.C., Dabbeni-Sala F., Maniero A.L.: Biochemistry43, 13214–13224 (2004)

    Article  Google Scholar 

  5. Buy C., Girault G., Zimmermann J.-L.: Biochemistry35, 9880–9891 (1996)

    Article  Google Scholar 

  6. Zimmermann J.-L., Schneider B., Morlet S., Amano T., Sigalat C.: Spectrochim. Acta A56, 285–299 (2000)

    Article  Google Scholar 

  7. Bennati M., Hertel M.M., Fritscher J., Prisner T.F., Weiden N., Hofweber R., Sporner M., Horn G., Kalbitzer H.R.: Biochemistry45, 42–50 (2006)

    Article  Google Scholar 

  8. Legler P.M., Lee H.C., Peisach J., Mildvan A.S.: Biochemistry41, 4655–4668 (2002)

    Article  Google Scholar 

  9. Morrissey S.R., Horton T.E., DeRose V.J.: J. Am. Chem. Soc.122, 3473–3481 (2000)

    Article  Google Scholar 

  10. Hoogstraten C.G., Grant C.V., Horton T.E., DeRose V.J., Britt R.D.: J. Am. Chem. Soc.124, 834–842 (2002).

    Article  Google Scholar 

  11. Halkides C.J., Farrar C.T., Larsen R.G., Redfield A.G., Singel D.J.: Biochemistry33, 4019–4035 (1994)

    Article  Google Scholar 

  12. Rohrer M., Prisner, T. F., Bruegmann O., Kaess H., Spoerner M., Wittinghofer A., Kalbitzer H.R.: Biochemistry40, 1884–1889 (2001)

    Article  Google Scholar 

  13. Larsen R.G., Halkides C.J., Redfield A.G., Singel D.J.: J. Am. Chem. Soc.114, 9608–9611 (1992)

    Article  Google Scholar 

  14. Schneider B., Sigalat C., Amano T., Zimmermann J.-L.: Biochemistry39, 15500–15512 (2000)

    Article  Google Scholar 

  15. Eccleston J.F., Webb M.R., Ash D.E., Reed G.H.: J. Biol. Chem.256, 10774–10777 (1981)

    Google Scholar 

  16. Leyh T.S., Sammons R.D., Frey P.A., Reed G.H.: J. Biol. Chem.257, 15047–15053 (1982)

    Google Scholar 

  17. Olsen L.R., Reed G.H.: Arch. Biochem. Biophys.304, 242–247 (1993)

    Article  Google Scholar 

  18. Reed G.H., Leyh T.S.: Biochemistry19, 5472–5480 (1980)

    Article  Google Scholar 

  19. Astashkin A.V., Raitsimring A.M.: J. Chem. Phys.117, 6121–6132, (2002)

    Article  ADS  Google Scholar 

  20. Hoogstraten C.G., Britt R.D.: RNA8, 252–260 (2002)

    Article  Google Scholar 

  21. Zech S.G., Sun W.-C., Jacques V., Caravan P., Astashkin A.V., Raitsimring A.M.: Chem. Phys Chem.6, 2570–2577 (2005)

    Google Scholar 

  22. Raitsimring A.M., Astashkin A.V., Baute D., Goldfarb D., Caravan P.: J. Phys. Chem. A108, 7318–7323 (2004)

    Article  Google Scholar 

  23. Vardi R., Bernardo M., Thomman H., Strohmaier K.G., Vaughan D.E.W., Goldfarb D.: J. Magn. Reson.126, 229–241 (1997)

    Article  ADS  Google Scholar 

  24. Astashkin A.V., Raitsimring A.M., Caravan P.: J. Phys. Chem. A108, 1990–2001 (2004)

    Article  Google Scholar 

  25. Arieli D., Delabie A., Groothaert M., Pierloot K., Goldfarb D.: J. Phys. Chem. B106, 9086–9097 (2002)

    Article  Google Scholar 

  26. Gromov I., Krymov V., Manikandan P., Arieli D., Goldfarb D.: J. Magn. Reson.139, 8–17 (1999).

    Article  ADS  Google Scholar 

  27. Epel B., Arieli D., Baute D., Goldfarb D.: J. Magn. Reson.164, 78–83 (2003)

    Article  ADS  Google Scholar 

  28. Tan X.L., Bernardo M., Thomann H., Scholes C.P.: J. Chem. Phys.98, 5147–5157 (1993)

    Article  ADS  Google Scholar 

  29. Epel B.; Manikandan P., Kroneck P.M.H., Goldfarb D.: Appl. Magn. Reson.21, 287–297 (2001)

    Article  Google Scholar 

  30. Jallon J., Cohn M.: Biochim. Biophys. Acta222, 542–545 (1970)

    Google Scholar 

  31. Eckstein F.: Annu. Rev. Biochem.54, 367–402 (1985)

    Article  Google Scholar 

  32. Zetter M.S., Lo G.Y.S., Dodgen H.W., Hunt J.P.: J. Am. Chem. Soc.100, 4430–4436 (1978)

    Article  Google Scholar 

  33. Mustafi D., Telser J., Makinen M.W.: J. Am. Chem. Soc.114, 6219–6226 (1992)

    Article  Google Scholar 

  34. Sternlicht H., Shulman R.G., Anderson E.W.: J. Chem. Phys.43, 3123–3132 (1965)

    Article  ADS  Google Scholar 

  35. Baute D., Goldfarb D.: J. Phys. Chem. A109, 7865–7871 (2005)

    Article  Google Scholar 

  36. Serpersu E.H., McCracken J., Peisach J., Mildvan A.S.: Biochemistry27, 8034–8044 (1988)

    Article  Google Scholar 

  37. Walsby C.J., Telser J., Rigsby R.E., Armstrong R.N., Hoffman B.M.: J. Am. Chem. Soc.127, 8310–8319 (2005)

    Article  Google Scholar 

  38. LoBrutto R., Smithen G.W., Reed G.H., Orme-Johnson W.H., Tan S.L., Leigh J.S.: Biochemistry25, 5654–5660 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potapov, A., Goldfarb, D. Quantitative characterization of the Mn2+ complexes of ADP and ATPγS by W-band ENDOR. Appl. Magn. Reson. 30, 461–472 (2006). https://doi.org/10.1007/BF03166212

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166212

Keywords

Navigation