Skip to main content
Log in

Single-sided hydroge bonding to the quinone cofactor in photosystem I probed by selective13C-labelled naphthoquinones and transient EPR

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Hydrogen bonding between teh protein and one or both of the two 1,4-quinone carbonyl groups of a benzo-or naphtho-quinone constitutes a significant protein-cofactor interaction in photosynthetic reaction centers. The redistribution of charge and spin density due to a particular H-bonding scheme leaves the largest hyperfine couplings (hfc) at the highest density positions, i.e., the nuclei of the carbonyl groups directly involved in H-bonding. The spin density changes at the ring carbon positions are accessed exeripmentlaly via electron paramagnetic resonance-determined hfc tensor elements of selective13C isotope labels in one of the two carbonyl groups. Complete hfc tensor data are presented for each of the13C positions in the functional charge-separated state in reaction centers of phytosystem I (PS I) isolated from cyanobacteria. A highly asymmetric H-bonding scheme for the A1 quinone binding site due to a single dominant H-bond to one carbonyl group is confirmed. A comparison to other wel-studied quinone binding sites of other protien-cofactor systems with more complex H-bonding schemes reveals the uniqueness of the PS I site. The single-sided A1 quinone site provides an ideal test case for the various sets of density functional theory (DFT) calculations that are currently available. While the overall agreement between experimental and calculated data is quite satisfactory, a significant discrepancy is found for the high-spin-density13C position associated with the H-bonded carbonyl. The dominant hfc component (and spin density) is underestimated in the DFT calculations, not only for the high-asymmetry case in PS I, but also for other quinone binding sites with less asymmetry that result from more complex H-bonding schemes. The cosnequences and potential relevance of this finding for biological function are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jordan P., FormmeP., Witt H.T., Klukas O., Saenger W., Krauss N.: Nature411, 909–917 (2001)

    Article  ADS  Google Scholar 

  2. Fromme P., Jordan P., Krauß N.: Biochim. Biophys. Acta1507, 5–31 (2001)

    Article  Google Scholar 

  3. Ben-Shem A., Frolow F., Nelson N.: Nature426, 630–635 (2003)

    Article  ADS  Google Scholar 

  4. Stehlik D. in: Photosystem I: The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase (Goldbeck J.H., ed.), pp. 361–386. Dordrecht: Springer 2006.

    Google Scholar 

  5. Xu W., Chitnis P.R., Valieva A., van der Est A., Brettel K., Guergova-Kuras M., Pushkar Y.N., Zech S.G., Stehlik D., Shen G., Zybailov B., Golbeck J.H.: J. Biol. Chem.278, 27876–27887 (2003)

    Article  Google Scholar 

  6. Xu W., Chitnis P., Valieva A., van der Est A., Pushkar Y.N., Krystyniak M., Teutloff C., Zech S.G., Bittl R., Stehlik D., Zybailov B., Shen G., Goldbeck J.H.: J. Biol. Chem.278, 27864–27875 (2003)

    Article  Google Scholar 

  7. Pushkar Y.N., Golbeck J.H., Stehlik D., Zimmermann H.: J. Phys. Chem. B108, 9439–9448 (2004)

    Article  Google Scholar 

  8. Lubitz W., Feher G.: Appl. Magn. Reson.17, 1–48 (1999)

    Article  Google Scholar 

  9. Kacprzak S., Kaupp M., MacMillan F.: J. Am. Chem. Soc.128, 5659–5671 (2006)

    Article  Google Scholar 

  10. Reiter R.C., Stevenson G.R., Wang, Z.Y.: J. Phys. Chem.94, 5717–5720 (1990)

    Article  Google Scholar 

  11. Premasagar V., Palaniswamy V.A., Eisenbraun E.J.: J. Org. Chem.46, 2974–2976 (1981)

    Article  Google Scholar 

  12. Johnson T.W., Shen G., Zybailov B., Kolling D., Reategui R., Beauparlant S., Vassiliev I.R., Bryant D.A., Jones A.D., Golbeck J.H., Chitnis P.R.: J. Biol. Chem.275, 8523–8530 (2000)

    Article  Google Scholar 

  13. Biggins J., Mathis P.: Biochemistry27, 1494–1500 (1988)

    Article  Google Scholar 

  14. Itoh S., Iwaki M., IkegamiI.: Biochim. Biophys. Acta1507, 115–138 (2001)

    Article  Google Scholar 

  15. Pushkar Y.N., Zech S.G., Stehlik D., Brown S., van der Est A., Zimmermann H.: J. Phys. Chem. B106, 12052–12058 (2002)

    Article  Google Scholar 

  16. Grimaldi S., Ostermann T., Weiden N., Mogi T., Miyoshi H., Ludwig B., Michel H., Prisner T.F., MacMillan F.: Biochemistry42, 5632–5639 (2003)

    Article  Google Scholar 

  17. Pushkar Y.N., Ayzatulin O., Stehlik D.: Appl. Magn. Reson.28, 195–211 (2005)

    Google Scholar 

  18. Pushkar Y.N., Stehlik D., van Gastel M., Lubitz W.: J. Mol. Struct.700, 233–241 (2004)

    Article  ADS  Google Scholar 

  19. O’Malley P.J.: Biochim. Biophys. Acta1411, 101–113 (1999)

    Article  Google Scholar 

  20. Kacprzak S., Kaupp M.: J. Phys. Chem. B108, 2464–2469 (2004)

    Article  Google Scholar 

  21. Sinnecker S., Reijerse E., Neese F., Lubitz W.: J. Am. Chem. Soc.126, 3280–3290 (2004)

    Article  Google Scholar 

  22. Epel B., Niklas J., Sinnecker S., Zimmermann H., Lubitz W.: J. Phys. Chem. B110, 11549–11560 (2006)

    Article  Google Scholar 

  23. Carrington A., McLachlan A.D.: Introduction to Magnetic Resonance with Applications ot Chemistry and Chemical Physics. New York: Harper & Row 1967.

    Google Scholar 

  24. Niklas J.: doctoral thesis, Technische Universität, Berlin, Germany (2006)

  25. Teutloff C.: doctoral thesis, Technische Universität, Berlin, Germany (2003)

  26. Rohrer M., Gast P., Möbius K., Prisner T.F.: Chem. Phys. Lett.259, 523–530 (1998)

    Article  Google Scholar 

  27. Schnegg A., Fuhs M., Rohrer M., Lubitz W., Prisner T.F., Möbius K.: J. Phys. Chem. B.106, 9454–9462 (2002)

    Article  Google Scholar 

  28. Ishikita H., Knapp E.W.: J. Biol. Chem.278, 52002–52011 (2003)

    Article  Google Scholar 

  29. Teutloff C., Bittl R., Lubitz W.: Appl. Magn. Reson.26, 5–21 (2004)

    Article  Google Scholar 

  30. Flores M., Abresch E., Lubitz W., Calvo R., Isaacson R., Feher G.: Biophys. J.86, 11A-11A (2004)

    Google Scholar 

  31. Flores M., Isaacson R., Abresch E., Calvo R., Lubitz W., Feher G.: Biophys. J.90, 3356–3362 (2006)

    Article  Google Scholar 

  32. Flores M., Isaacson R.A., Calvo R., Feher G., Lubitz W.: Chem. Phys.294, 401–413 (2003)

    Article  Google Scholar 

  33. Flores M., Isaacson R., Abresch E., Calvo R., Lubitz W., Feher G.: Biophys. J. (2006) in press.

  34. Vandenbrink J.S., Spoyalov A.P., Gast P., Vanliemt W.B.S., Raap J., Lugtenburg J., Hoff A.J.: FEBS Lett.353, 273–276 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karyagina, I., Golbeck, J.H., Srinivasan, N. et al. Single-sided hydroge bonding to the quinone cofactor in photosystem I probed by selective13C-labelled naphthoquinones and transient EPR. Appl. Magn. Reson. 30, 287–310 (2006). https://doi.org/10.1007/BF03166202

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166202

Keywords

Navigation