Skip to main content
Log in

Application of the Raman heterodyne technique for the detection of EPR and ENDOR

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Raman heterodyne detection is a coherent optical-RF double resonance technique where the optical and RF fields induce coherence within a three level system and a resultant Raman field is measured using heterodyne detection. This approach has been used previously to detect NMR and more recently EPR. In this paper the parameters that affect the amplitude and signal to noise ratio of the Raman heterodyne signals are considered. The power levels in relation to the oscillator strength and dephasing times, the amplitude and spectrum of the laser frequency jitter in relation to the optical homogeneous linewidths and holeburning rates, and the sample properties such as absorption strength and optical quality, are all factors that affect the Raman signal. The presentation is focused on the Raman heterodyne detected EPR of the nitrogen-vacancy pair centre in diamond making comparisons with Raman heterodyne detected NMR signals obtained for rare earth ion systems. RF-RF double resonance studies, RF holeburning and ENDOR, which give information about the hyperfine levels are also reported for the nitrogen-vacancy centre. The resonance frequencies are in agreement with those predicted from the spin Hamiltonian. The factors affecting the lineshapes and relative intensities of the double resonance signals are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mlynek J., Wong N.C., DeVoe R.G., Kintzer E.S., Brewer R.G. Phys. Rev. Lett.50, 993–996 (1983)

    Article  ADS  Google Scholar 

  2. Wong N.C., Kintzer E.S., Mlynek J., Brewer R.G.: Phys. Rev. B28, 4993–5010 (1983)

    Article  ADS  Google Scholar 

  3. Takahashi Y., Tanaka T., Hatanaka H., Fukuda Y., Hashi T.: J. of Luminescence38, 261 (1987)

    Article  ADS  Google Scholar 

  4. Takahashi Y., Ishikawa K., Tanaka T., Fukuda Y., Hatanaka H., Hashi T.: Phys. Rev. B38, 7121–7124 (1988)

    Article  ADS  Google Scholar 

  5. Erickson L.E.: Phys. Rev. B39, 6342–6347 (1989)

    Article  ADS  Google Scholar 

  6. Mitsunaga M., Kintzer E.S., Brewer R.G.: Phys. Rev. Lett.52, 1484–1487 (1984) and Phys. Rev. B31, 6947–6957 (1985)

    Article  ADS  Google Scholar 

  7. Erickson L.E.: Phys. Rev. B42, 3789–3797 (1990)

    Article  ADS  Google Scholar 

  8. Erickson L.E.: Phys. Rev. B32, 1 (1985)

    Article  ADS  Google Scholar 

  9. Erickson L.E.: J. Phys. C: Solid. State Phys.20, 291–298 (1987)

    Article  ADS  Google Scholar 

  10. Bloch P.D., Brocklesby W.S., Harley R.T., Taylor D.R.: J. Physique C7, 523 (1985)

    Google Scholar 

  11. Manson N.B., Silversmith A.J.: J. Phys. C: Solid State Phys.20, 1507–1517 (1987)

    Article  ADS  Google Scholar 

  12. Szabo A., Muramoto T., Kaarly R.: Optics Letters13 1075–1077 (1988) and Phys. Rev. B42, 7769–7776 (1990)

    Article  ADS  Google Scholar 

  13. Fisk P.T.H., He X.-F., Holliday K., Manson N.B.: J. of Luminescence45, 26–28 (1990)

    Article  ADS  Google Scholar 

  14. Holliday K., He X.-F., Fisk P.T.H., Manson N.B.: Optics Letters15, 983–985 (1990)

    Article  ADS  Google Scholar 

  15. Manson N.B., He X.-F., Fisk P.T.H.: Optics Letters15, 1094–1096 (1990)

    Article  ADS  Google Scholar 

  16. Manson N.B., He X.-F., Fisk P.T.H.: J. of Luminescence (1992)

  17. Abramowitz M., Stegun I.A. in: Handbook of Mathematical Functions. New York: Dover 1965.

    Google Scholar 

  18. Davies G., Hamer M.F.: Proc. R. Soc. Lond. A348, 285–298 (1976)

    Article  ADS  Google Scholar 

  19. Davies G.: Chem. Phys. Carbon13, 1 (1977)

    Google Scholar 

  20. Collins A.T., Thomaz M.T., Jorge M.I.B.: J. Phys. C: Solid State Phys.16, 2177–2181 (1983)

    Article  ADS  Google Scholar 

  21. Loubser J.H., Wyk J.A.: Diamond Research11, 4 (1977)

    Google Scholar 

  22. Macfarlane R.M., Shelby R.M. in: Spectroscopy of Solids Containing Rare Earth Ions (Kaplyanskii A.A., Macfarlane R.M. eds.), pp. 51–184. Amsterdam: North Holland 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manson, N.B., Fisk, P.T.H. & He, X.F. Application of the Raman heterodyne technique for the detection of EPR and ENDOR. Appl. Magn. Reson. 3, 999–1019 (1992). https://doi.org/10.1007/BF03166169

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166169

Keywords

Navigation