Skip to main content
Log in

On the theory of mixing-frequency electron spin-echo envelope modulation spectroscopy

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

It has recently been stated that the parametrization of the time variables in the one-dimensional (1-D) mixing-frequency electron spin-echo envelope modulation (MIF-ESEEM) experiment is incorrect and hence the wrong frequencies for correlated nuclear transitions are predicted. This paper is a direct response to such a claim, its purpose being to show that the parametrization in 1- and 2-D MIF-ESEEM experiments possesses the same form as that used in other 4-pulse incrementation schemes and predicts the same correlation frequencies. We show that the parametrization represents a shearing transformation of the 2-D time-domain and relate the resulting frequency domain spectrum to the HYSCORE spectrum in terms of a skew-projection. It is emphasized that the parametrization of the time-domain variables may be chosen arbitrarily and affects neither the computation of the correct nuclear frequencies nor the resulting resolution. The usefulness or otherwise of the MIF parameters |ψ| > 1 is addressed, together with the validity of the original claims of the authors with respect to resolution enhancement in cases of purely homogeneous and inhomogeneous broadening. Numerical simulations are provided to illustrate the main points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Höfer P., Grupp A., Nebenführ H., Mehring M.: Chem. Phys. Lett.132, 279–283 (1986)

    Article  ADS  Google Scholar 

  2. Schweiger A., Jeschke G.: Principles of Pulse Electron Paramagnetic Resonance. Oxford: Oxford University Press 2001.

    Google Scholar 

  3. Song R., Zhong Y.C., Noble C.J., Pilbrow J.R., Hutton D.R.: Chem. Phys. Lett.243, 324–329 (1995)

    Article  ADS  Google Scholar 

  4. Song R., Zhong Y.C., Noble C.J., Pibrow J.R., Hutton D.R.: Chem. Phys. Lett.247, 477–483 (1995)

    Article  ADS  Google Scholar 

  5. Song R., Zhong Y.C., Noble C.J., Pilbrow J.R., Hutton D.R.: J. Magn. Reson. A117, 320–323 (1995)

    Article  Google Scholar 

  6. Hubrich M., Jeschke G., Schweiger A.: J. Chem. Phys.104, 2172–2184 (1996)

    Article  ADS  Google Scholar 

  7. Gemperle C.: Thesis, ETH Zürich, No. 9192, Zurich, Switzerland, 1990.

  8. Song R., Zhong Y.C., Noble C.J., Pilbrow J.R., Hutton D.R.: Appl. Magn. Reson.11, 391–399 (1996)

    Article  Google Scholar 

  9. Song R.: J. Chem. Phys.105, 9046–9050 (1996)

    Article  ADS  Google Scholar 

  10. Ponti A.: Appl. Magn. Reson.15, 1–9 (1998)

    Article  Google Scholar 

  11. Song R.: Thesis, Monash University, Clayton, Victoria, Australia, 1996.

  12. Tyryshkin A.M., Dikanov S.A., Goldfarb D.: J. Magn. Reson. A105, 271–283 (1993)

    Article  Google Scholar 

  13. Höfer P.: J. Magn. Reson. A111, 77–86 (1994)

    Article  Google Scholar 

  14. Song R., Zhong Y.C., Noble C.J., Pilbrow J.R., Hutton D.R.: Chem. Phys. Lett.237, 86–90 (1995)

    Article  ADS  Google Scholar 

  15. Ponti A., Schweiger A.: J. Chem. Phys.102, 5207–5219 (1995)

    Article  ADS  Google Scholar 

  16. Ernst R.R., Bodenhausen G., Wokaun A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford: Clarendon Press 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drew, S.C., Pilbrow, J.R. On the theory of mixing-frequency electron spin-echo envelope modulation spectroscopy. Appl. Magn. Reson. 22, 561–576 (2002). https://doi.org/10.1007/BF03166133

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166133

Keywords

Navigation