Skip to main content
Log in

Application of the time-variable feedback to the input amplifiers of pulse magnetic resonance spectrometers: Theoretical considerations

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

An analytical model for the optimization of the signal-to-noise (S/N) performance for the receiver with input resonance circuit and variable feedback is developed. It is shown that by varying the feedback type and depth optimization of the receiver the best S/N performance could be achieved. This approach is based upon a resonator-receiver model with lumped elements. These assumptions are relatively general for the model to be applicable for the design of both continuous and pulse receivers in radio-frequency and microwave bands. The overall S/N performance of the receiver upon the noise properties of its elements and the feedback settings in the input amplifier is studies for different parameter settings. It is shown that the separate optimization of individual elements does not necessarily lead to the best S/N performance of the receiver, especially when bandwidth properties and noise contribution of the elements are substantially different. It is shown that critical coupling of the amplifier to the resonance structure could be far from optimum. In some cases the optimum S/N performance could be achieved with coupling settings below the critical value. But under the assumptions made the coupling above the critical value does not correspond to be best receiver S/N performance. Suggestions on the optimum architecture of magnetic resonance spectrometer receivers with variable feedback are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abragam A.: The Principles of Nuclear Magnetism, Oxford: Clarendon Press 1967.

    Google Scholar 

  2. Poole C.P., Jr.: Electron Spin Resonance: A Comprehensive Treatise and Experimental Technique. 2nd edn., New York: Wiley 1983.

    Google Scholar 

  3. Feher G.: Bell Syst. Technol. J.36, 449–484 (1957)

    Google Scholar 

  4. Ernst R.: Adv. Magn. Reson.2, 1–131 (1966)

    Google Scholar 

  5. Hoult D.I.: Rev. Sci. Instrum.50, 193–200 (1979)

    Article  ADS  Google Scholar 

  6. Rinard G.A., Quine R.W., Song R., Eaton G.R., Eaton S.S.: J. Magn. Reson.140, 69–83 (1999)

    Article  ADS  Google Scholar 

  7. Cho S.-I., Sullivan N.S.: Concepts Magn. Reson.4, 293–306 (1992)

    Article  Google Scholar 

  8. Rinard G.A., Quine R.W., Harbridge J.R., Song R., Eaton G.R., Eaton S.S.: J. Magn. Reson.140, 218–227 (1999)

    Article  ADS  Google Scholar 

  9. Ott H.W.: Noise Reduction Techniques in Electronic Systems, 2nd edn. New York: Wiley 1988.

    Google Scholar 

  10. Hoult D.I.: Prog. Nucl. Magn. Reson. Spectrosc.12, 41–77 (1978)

    Article  Google Scholar 

  11. Rudakov T.N., Belyakov A.V., Mikhaltsevich V.T.: Meas. Sci. Technol.8, 444–448 (1997)

    Article  ADS  Google Scholar 

  12. Blumenfeld L.A., Voevodskkij V.V., Semenov A.G.: Applications of ESR in Chemistry. Novosibirsk: Acad. Nauk SSSR, Sibirsk. Otd. 1972.

  13. Kevan L., Schwartz R.N.: Time Domain Electron Spin Resonance. New York: Wiley 1979.

    Google Scholar 

  14. Shane J.J.: Ph.D. thesis, Nijmegen University, Nijmegen, The Netherlands, 1993.

  15. Annino G., Cassettari M., Fittipaldi M., Longo I., Martinelli M., Massa C.A., Pardi L.A.: J. Magn. Reson.143, 88–94 (2000)

    Article  ADS  Google Scholar 

  16. Raad A., Darrasse L.: Magn. Reson. Imaging10, 55–65 (1991)

    Article  Google Scholar 

  17. Borsboom H.M., Trommel J., Melkopf A.F. in: Proceedings of the Society of Magnetic Resonance 12th Annual Meeting, p. 1355, New York, USA, August 14–20, 1993.

  18. Luyten M.J., Korbee D.D., Claassen-Vujčiè T., Melkopf A.F. in: Proceedings of the Society of Magnetic Resonance 3rd Meeting and European Society for Magnetic Resonance in Medicine and Biology 12th Meeting, p. 934, Nice, France, August 19–24, 1995.

  19. Koptioug A.V., Reijerse E.J., Klaassen A.A.K. in: Proceedings of the Vth National Conference on Physics and Chemistry of Free Radicals, pp. 321–323. Chernogolovka, Russia, 1997.

  20. Koptioug A.V., Reijerse E.J., Klaassen A.A.K. in: Proceedings of the Joint 29th AMPERE and 13th ISMAR conference, vol. II, pp. 1144–1145. Berlin, August 2–7, 1998.

  21. Koptioug A.V., Reijerse E.J., Klaassen A.A.K.: Appl. Magn. Reson.22, 455–473 2002)

    Article  Google Scholar 

  22. Broekaert P., Jeener J.: J. Magn. Reson. A113, 60–64 (1995)

    Article  Google Scholar 

  23. Barjat H., Mattiello D.L., Freeman R.: J. Magn. Reson.136, 114–117 (1999)

    Article  ADS  Google Scholar 

  24. Blauch A.J., Schiano J.L., Ginsberg M.D.: J. Magn. Reson.144, 305–315 (2000)

    Article  ADS  Google Scholar 

  25. Bogner R.E.: Electron. Eng.1965, 115–117.

  26. Strandberg M.W.P.: Rev. Sci. Instrum.43, 307–315 (1972)

    Article  ADS  Google Scholar 

  27. Ishikawa Y.: MWE’92 Microwave Workshop Digest1992, 351–356.

  28. Ishikawa Y., Yamashita S., Hidaka S.: IEICE Trans. Electron.E76-C, 925–931 (1993)

    Google Scholar 

  29. Stefens M.: Electronics Design News, July 1996, 113–125.

  30. Van Heteren J.G., Henkelman R.M., Bronskill M.J.: Magn. Reson. Imaging5, 93–99 (1987)

    Article  Google Scholar 

  31. Van Heteren J.G., Henkelman R.M., Bronskill M.J.: Magn. Reson. Imaging5, 101–108 (1987)

    Article  Google Scholar 

  32. Pollak V.L., Slater R.R.: Rev. Sci. Instrum.37, 268–272 (1966)

    Article  ADS  Google Scholar 

  33. Kuhns P.L.: J. Magn. Reson.78, 69–76 (1988)

    Google Scholar 

  34. Reykowski A., Wright S.M., Porter J.R.: Magn. Reson. Med.33, 848–852 (1995)

    Article  Google Scholar 

  35. Kodibagkar V.D., Konradi M.S.: J. Magn. Reson.144, 53–57 (2000)

    Article  ADS  Google Scholar 

  36. Viohl I., Gullberg G.T.: J. Magn. Reson. Imaging4, 627–630 (1994)

    Article  Google Scholar 

  37. Rinard G.A., Quine R.W., Eaton S.S., Eaton G.R., Froncisz W.: J. Magn. Reson. A108, 71–81 (1994)

    Article  Google Scholar 

  38. Cho S.-I., Sullivan N.S.: Concepts Magn. Reson.4, 227–243 (1992)

    Article  Google Scholar 

  39. Laukien D.D., Weaver D., Tschopp W.H.: Concepts Magn. Reson.6, 91–114, (1994)

    Article  Google Scholar 

  40. Rinard G.A., Quine R.W., Eaton S.S., Eaton G.R.: J. Magn. Reson. A105, 137–144 (1993)

    Article  Google Scholar 

  41. MacLaughlin D.E.: Rev. Sci. Instrum.60, 3242–3247 (1989)

    Article  ADS  Google Scholar 

  42. Motchenbacher C.D., Fitchen F.C. Low-Noise Electronic Design. New York: Wiley 1973.

    Google Scholar 

  43. Horowitz P., Hill W. in: The Art of Electronics, 3rd edn., chap 7. Cambridge: Cambridge University Press 1990

    Google Scholar 

  44. Nyquist H.: Phys. Rev.12, 110–113 (1928)

    Article  ADS  Google Scholar 

  45. Van der Ziel: Noise in Measurements. New York: Wiley 1976

    Google Scholar 

  46. Whalen A.D.: Detection of Signals in Noise. New York: Academic Press 1971.

    Google Scholar 

  47. Baier S.: RF J., May 1966, 66–73.

  48. Suits B.H., Garroway A.N., Miller J.B.: J. Magn. Reson.132, 54–54 (1998)

    Article  ADS  Google Scholar 

  49. Gualtieri D.M.: Rev. Sci. Instrum.58, 299–300 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koptioug, A.V. Application of the time-variable feedback to the input amplifiers of pulse magnetic resonance spectrometers: Theoretical considerations. Appl. Magn. Reson. 22, 513–537 (2002). https://doi.org/10.1007/BF03166130

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166130

Keywords

Navigation