Skip to main content
Log in

Development of isoindoline nitroxides for EPR oximetry in viable systems

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Nitroxides are widely used as biophysical probes to study molecular motion, intracellular oxygen, pH, transmembrane potential, and cellular redox metabolism, etc. They may be rapidly metabolized to hydroxylamines by cells, which limits their use in viable systems. In this study, we have characterized relevant properties in cells of several isoindoline nitroxides that have been prepared to have different physicochemical properties: 1,1,3,3-tetramethylisoindolin-2-yloxyl (TMIO) and its analogs 5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl (CTMIO), 5-(N,N,N-trimethylammonio)-1,1,3,3-tetramethyl isoindolin-2-yloxyl iodide (QATMIO) and 2-hydroxy-1,1,3,3-tetramethylisoindoline hydrochloride (TMIOH.HCI). The oxygen sensitivity and metabolic kinetics of these were compared in CHO cells under different oxygen tensions with 1-oxyl-2,2,6,6-tetramethyl-4-piperidione (Tempone) and 3-carboxyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (PCA). Cytotoxicity was evaluated by the measurement of oxygen consumption rates, trypan blue exclusion, and clone formation. TMIO and its analogues have a higher relative oxygen sensitivity than Tempone and PCA with the oxygen sensitivity in electron paramagnetic resonance (EPR) spectrometry in the order of: TMIO=TMIOH=CTMIO>QATMIO=Tempone<PCA. The rates of metabolism of these nitroxides are moderate and depend on oxygen concentration, ring type, ring substituent, and membrane permeation. These nitroxides have low cytotoxicity. The results indicate that TMIO and its analogues are potentially useful for EPR studies of viable systems, especially for oximetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glockner J.F., Swartz H.M., Pals M.: J. Cell. Physiol.140, 505–511 (1989)

    Article  Google Scholar 

  2. Hu H., Sosnovsky G., Swartz H.M.: Biochim. Biophys. Acta112, 161–166 (1992)

    Google Scholar 

  3. Glockner J.F., Norby S.W., Swartz H.M.: Magn. Reson. Med.29, 12–18 (1992)

    Article  Google Scholar 

  4. Kuppusamy P., Shankar R.A., Zweier J.L.: Phys. Med. Biol.43, 1837–1844 (1998)

    Article  Google Scholar 

  5. Baker J.E., Froncisz W., Kalyanaraman B.: Free Radic. Biol. Med.22, 109–115 (1997)

    Article  Google Scholar 

  6. Inoue M., Utsumi H., Kirino Y.: Chem. Pharm. Bull. (Tokyo)42, 2346–2348 (1994)

    Google Scholar 

  7. Gallez B., Mäder K., Swartz H.M.: Magn. Reson. Med.36, 694–697 (1996)

    Article  Google Scholar 

  8. Lai C.S., Hopwood L.E., Swartz H.M.: Exp. Cell Res.130, 437–442 (1980)

    Article  Google Scholar 

  9. Edgcomb M.R., Sirimanne S., Wilkinson B.J., Drouin P., Morse R.D.: Biochim. Biophys. Acta1463, 31–42 (2000)

    Article  Google Scholar 

  10. Zhang R., Goldstein S., Samuni A.: Free Radic. Biol. Med26, 1245–1252 (1999)

    Article  Google Scholar 

  11. Spooner P.J.R., Veenhoff L.M., Watts A., Poolman B.: Biochemistry38, 9634–9639 (1999)

    Article  Google Scholar 

  12. Swartz H.M., Chen K., Hu H.P., Hideg, K.: Magn. Reson. Med.22, 372–377 (1991)

    Article  Google Scholar 

  13. Sano H., Naruse M., Matsumoto K., Oi T., Utsumi H.: Free Radic. Biol. Med.28, 959–969 (2000)

    Article  Google Scholar 

  14. Mäder K., Bacic G., Domb A., Elmalak O., Langer R., Swartz H.M.: J. Pharm. Sci.86, 126–134 (1997)

    Article  Google Scholar 

  15. Offer T., Mohsen M., Samuni A.: Free Radic. Biol. Med.25, 832–838 (1998)

    Article  Google Scholar 

  16. Krishna M.C., DeGraff W., Hankovszky O.H., Sar C.P., Kalai T., Jeko J., Russo A., Mitchell J.B., Hideg K.: J. Med. Chem.41, 3477–3492 (1998)

    Article  Google Scholar 

  17. Shankar R.A., Hideg K., Zweier J.L., Kuppusamy P.: J. Pharmacol. Exp. Ther.292, 838–845 (2000)

    Google Scholar 

  18. Hahn S.M., Krishna M.C., DeLuc A.M., Coffin D., Mitchell J.B.: Free Radic Biol. Med.28, 953–958 (2000)

    Article  Google Scholar 

  19. Dikalov S., Skatchkov M., Fink B., Bassenge E.: Nitric Oxide1, 423–431 (1997)

    Article  Google Scholar 

  20. Dikalov S., Skatchkov M., Bassenge E.: Biochem. Biophys. Res. Commun.231, 701–704 (1997)

    Article  Google Scholar 

  21. Miura Y., Utsumi H., Kashiwagi M., Hamada A.: J. Biochem. (Tokyo)108, 516–518 (1990)

    Google Scholar 

  22. Lai C.S., Hopwood L.E., Hyde J.S., Lukiewicz S.: Proc. Natl. Acad. Sci. USA79, 1166–1170 (1982)

    Article  ADS  Google Scholar 

  23. Swartz H.: Adv. Exp. Med. Biol.345, 799–806 (1994)

    Google Scholar 

  24. James P.E., Grinberg O.Y., Michaels G., Swartz H.M.: J. Cell. Physiol.163, 241–247 (1995)

    Article  Google Scholar 

  25. Kocherginsky N., Swartz H.M.: Nitroxide Spin Labels: Reactions in Biology and Chemistry. Boca Raton: CRC Press 1995.

    Google Scholar 

  26. Sentjure M., Pecar S., Chen K., Wu M., Swartz H.M.: Biochim. Biophys. Acta1073, 329–335 (1991)

    Google Scholar 

  27. Kroll C., Langner A., Borchert H.H.: Free Radic. Biol. Med.26, 850–857 (1999)

    Article  Google Scholar 

  28. Suzuki-Nishimura T., Swartz H.M.: Free Radic. Biol. Med.17, 473–479 (1994)

    Article  Google Scholar 

  29. Chen K., Glockner J.F., Morse P.D. II, Swartz H.M.: Biochemistry28, 2496–2501 (1989)

    Article  Google Scholar 

  30. Chen K., Morse P.D. II, Swartz H.M.: Biochim. Biophys. Acta943, 477–484 (1988)

    Article  Google Scholar 

  31. Chen K., Swartz H.M.: Biochim. Biophys. Acta970, 270–277 (1988)

    Article  Google Scholar 

  32. Morse P.D. II, Ruuge E.K., Petro M.J., Swartz H.M.: Biochim. Biophys. Acta1034, 298–302 (1990)

    Google Scholar 

  33. Reid D.A., Bottle S.E., Micallef A.S.: Chem. Commun.17, 1907–1908 (1998)

    Article  Google Scholar 

  34. Micallef A.S., Bott R.C., Bottle S.E., Smith G., White J.M., Matsuda K., Iwamura H.: J. Chem. Soc. Perkin Trans.2, 65–71 (1999)

    Google Scholar 

  35. Micallef A.S., Bottle S.E., Gillies D.G., Hughes D.S., Sutcliffe L.H.: J. Chem. Soc. Perkin Trans. (2001) in press.

  36. Swartz H.M., Sentjure M., Morse P.D. II: Biochim. Biophys. Acta888, 82–90 (1986)

    Article  Google Scholar 

  37. Iannone A., Hu H., Tomasi A., Vannini V., Swartz H.M.: Biochim. Biophys. Acta991, 90–96 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, J., Bottle, S., Khan, N. et al. Development of isoindoline nitroxides for EPR oximetry in viable systems. Appl. Magn. Reson. 22, 357–368 (2002). https://doi.org/10.1007/BF03166117

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166117

Keywords

Navigation