LPS differentially affects vasoconstrictor responses: a potential role for RGS16?

  • M. C. Hendriks-Balk
  • M. Tjon-Atsoi
  • N. Hajji
  • A. E. Alewijnse
  • S. L. M. PetersEmail author


The profound hypotension in septic shock patients is difficult to treat as it is accompanied by depressed constrictor responses to α1-adrenoceptor agonists. Bacterial lipopolysaccharide (LPS) is the main trigger for most of the cardiovascular alterations occurring in septic shock. In this study we investigated the effects of LPS exposure on vascular contractility in general and the role of Regulator of G protein Signalling (RGS) proteins in the LPS-induced vascular alterations. Exposure of rat aortic rings to various LPS concentrations (3, 10, 30 μg/ml) for 22 hours differentially affected agonist-induced contractile responses at four distinct G-protein coupled receptors (α1-adrenoceptors, angiotensin II, serotonin and endothelin-1 receptors). While the endothelin-1-induced contraction was unaffected by LPS pre-treatment, phenylephrine- and angiotensin II-induced contraction were significantly reduced whereas serotonin-induced contraction was significantly enhanced. Concomitantly, LPS treatment increased the RGS16 mRNA expression both in aortic rings and cultured vascular smooth muscle cells (VSMCs) but not that of RGS2, RGS3, RGS4 or RGS5. The significant increase in RGS16 mRNA expression in VSMCs by LPS was time- and concentration-dependent but independent of increased inducible NO synthase (iNOS) activity. The changes in RGS16 mRNA might contribute to the differential regulation of the contractile responses to vasoconstrictors upon LPS exposure.


Regulator of G protein signalling Lipopolysaccharide Vasoconstriction Aorta 

Diversos efectos vasoconstrictores del LPS: un posible papel para RGS16?


El lipopolisacárido bacteriano LPS está implicado en la mayor parte de las alteraciones cardiovasculares propias del shock séptico. Se investiga en este trabajo sobre los efectos de la exposición al LPS en la contractilidad vascular en general y sobre el papel de las proteínas reguladoras de la señalización de proteínas G (RGS) en las alteraciones vasculares inducidas por el LPS. La exposición (22 h) de anillos aórticos de rata a diversas concentraciones de LPS (3, 10, 30 μg/ml) afecta de forma diferencial las respuestas contráctiles inducidas por la activación de 4 diferentes receptores acoplados a proteínas G (α1-adrenorreceptores, de angiotensina II, de serotonina y ET-1 de endotelina). Asi, el pretratamiento con LPS no afecta la contracción inducida por endotelina, mientras que reduce la de fenilefrina y angiotensina II e incrementa la de serotonina. Además, el tratamiento con LPS aumenta la expresión de RNAm de RGS16 tanto en anillos aórticos como en células VSMC, pero no de RNAm de RGS2, RGS3, RGS4 y RGS5. Los cambios de RNAm de RGS16 podrían contribuir a la regulación diferencial de las respuestas contráctiles a los vasoconstrictores en presencia de LPS.

Palabras clave

Regulador de señalización de proteína G Lipopolisacárido Vasoconstricción Aorta 


  1. 1.
    Burnier, M., Centeno, G., Waeber, G., Centeno, C., Burki, E. (1995): Effect of endotoxin on the angiotensin II receptor in cultured vascular smooth muscle cells.Br J Pharmacol,116, 2524–2530.PubMedGoogle Scholar
  2. 2.
    Calo, L.A., Pagnin, E., Ceolotto, G., Davis, P.A., Schiavo, S., Papparella, I., Semplicini, A., Pessina, A.C. (2008): Silencing regulator of G protein signaling-2 (RGS-2) increases angiotensin II signaling: insights into hypertension from findings in Bartter’s/Gitelman’s syndromes.J Hypertens,26, 938–945.PubMedCrossRefGoogle Scholar
  3. 3.
    Calo, L.A., Pagnin, E., Davis, P.A., Sartori, M., Ceolotto, G., Pessina, A.C., Semplicini, A. (2004): Increased expression of regulator of G protein signaling-2 (RGS-2) in Bartter’s/Gitelman’s syndrome. A role in the control of vascular tone and implication for hypertension.J Clin Endocrinol Metab,89, 4153–4157.PubMedCrossRefGoogle Scholar
  4. 4.
    Cho, H., Park, C., Hwang, I.Y., Han, S.B., Schimel, D., Despres, D., Kehrl, J.H. (2008): Rgs5 targeting leads to chronic low blood pressure and a lean body habitus.Mol Cell Biol,28, 2590–2597.PubMedCrossRefGoogle Scholar
  5. 5.
    Contestabile, A. (2008): Regulation of transcription factors by nitric oxide in neurons and in neural-derived tumor cells.Prog Neurobiol,84, 317–328.PubMedCrossRefGoogle Scholar
  6. 6.
    Dauphinee, S.M., Karsan, A. (2006): Lipopolysaccharide signaling in endothelial cells.Lab Invest,86, 9–22.PubMedCrossRefGoogle Scholar
  7. 7.
    Groeneveld, A.B., Bronsveld, W., Thijs, L.G. (1986): Hemodynamic determinants of mortality in human septic shock.Surgery,99, 140–153.PubMedGoogle Scholar
  8. 8.
    Gruetter, C.A., Ryan, E.T., Schoepp, D.D. (1987): Endothelium enhances tachyphylaxis to angiotensins II and III in rat aorta.Eur J Pharmacol,143, 139–142.PubMedCrossRefGoogle Scholar
  9. 9.
    Hattori, Y., Hattori, S., Kasai, K. (2003): Lipopolysaccharide activates Akt in vascular smooth muscle cells resulting in induction of inducible nitric oxide synthase through nuclear factor-kappa B activation.Eur J Pharmacol,481, 153–158.PubMedCrossRefGoogle Scholar
  10. 10.
    Hendriks-Balk, M.C., Michel, M.C., Alewijnse, A.E. (2007): Pitfalls in the normalization of realtime polymerase chain reaction data.Basic Res Cardiol,102, 195–197.PubMedCrossRefGoogle Scholar
  11. 11.
    Hendriks-Balk, M.C., Peters, S.L., Michel, M.C., Alewijnse, A.E. (2008): Regulation of G protein-coupled receptor signalling: Focus on the cardiovascular system and regulator of G protein signalling proteins.Eur J Pharmacol,585, 278–291.PubMedCrossRefGoogle Scholar
  12. 12.
    Hernanz, R., Alonso, M.J., Briones, A.M., Vila, E., Simonsen, U., Salaices, M. (2003): Mechanisms involved in the early increase of serotonin contraction evoked by endotoxin in rat middle cerebral arteries.Br J Pharmacol,140, 671–680.PubMedCrossRefGoogle Scholar
  13. 13.
    Heximer, S.P., Knutsen, R.H., Sun, X., Kaltenbronn, K.M., Rhee, M.H., Peng, N., Oliveira-dos-Santos, A., Penninger, J.M., Muslin, A.J., Steinberg, T.H., Wyss, J.M., Mecham, R.P., Blumer, K.J. (2003): Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice.J Clin Invest,111, 445–452.PubMedGoogle Scholar
  14. 14.
    Hollinger, S., Hepler, J.R. (2002): Cellular regulation of RGS proteins: modulators and integrators of G protein signaling.Pharmacol Rev,54, 527–559.PubMedCrossRefGoogle Scholar
  15. 15.
    Ishimaru, S., Shichiri, M., Mineshita, S., Hirata, Y. (2001): Role of endothelin-1/endothelin receptor system in endotoxic shock rats.Hypertens Res,24, 119–126.PubMedCrossRefGoogle Scholar
  16. 16.
    Matsuda, N., Hattori, Y. (2007): Vascular biology in sepsis: pathophysiological and therapeutic significance of vascular dysfunction.J Smooth Muscle Res,43, 117–137.PubMedCrossRefGoogle Scholar
  17. 17.
    Murray, P.T., Wylam, M.E., Umans, J.G. (2000): Nitric oxide and septic vascular dysfunction.Anesth Analg,90, 89–101.PubMedCrossRefGoogle Scholar
  18. 18.
    Opal, S.M. (2007): The host response to endotoxin, antilipopolysaccharide strategies, and the management of severe sepsis.Int J Med Microbiol,297, 365–377.PubMedCrossRefGoogle Scholar
  19. 19.
    Panetta, R., Guo, Y., Magder, S., Greenwood, M.T. (1999): Regulators of G-protein signaling (RGS) 1 and 16 are induced in response to bacterial lipopolysaccharide and stimulate c-fos promoter expression.Biochem Biophys Res Commun,259, 550–556.PubMedCrossRefGoogle Scholar
  20. 20.
    Parrillo, J.E., Parker, M.M., Natanson, C., Suffredini, A.F., Danner, R.L., Cunnion, R.E., Ognibene, F.P. (1990): Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy.Ann Intern Med,113, 227–242.PubMedGoogle Scholar
  21. 21.
    Patten, M., Bunemann, J., Thoma, B., Kramer, E., Thoenes, M., Stube, S., Mittmann, C., Wieland, T. (2002): Endotoxin induces desensitization of cardiac endothelin-1 receptor signaling by increased expression of RGS4 and RGS16.Cardiovasc Res,53, 156–164.PubMedCrossRefGoogle Scholar
  22. 22.
    Ross, E.M., Wilkie, T.M. (2000): GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins.Annu Rev Biochem,69, 795–827.PubMedCrossRefGoogle Scholar
  23. 23.
    Roth, B.L., Spitzer, J.A. (dy1987): Altered hepatic vasopressin and alpha 1-adrenergic receptors after chronic endotoxin infusion.Am J Physiol,252, E699–702.Google Scholar
  24. 24.
    Semplicini, A., Lenzini, L., Sartori M., Papparella, I., Calo, L. A., Pagnin, E., Strapazzon, G., Benna, C., Costa, R., Avogaro, A., Ceolotto, G., Pessina, A.C. (dy2006): Reduced expression of regulator of G-protein signaling 2 (RGS2) in hypertensive patients increases calcium mobilization and ERK1/2 phosphorylation induced by angiotensin II.J Hypertens,24, 1115–1124.CrossRefGoogle Scholar
  25. 25.
    Shuang, C., Wong, M.H., Schulte, D.J., Arditi, M., Michelsen, K.S. (dy2007): Differential expression of Toll-like receptor 2 (TLR2) and responses to TLR2 ligands between human and murine vascular endothelial cells.J Endotoxin Res,13, 281–296.CrossRefGoogle Scholar
  26. 26.
    Siderovski, D.P., Willard, F.S. (dy2005): The GAPs, GEFs, adn GDIs of heterotrimeric G-protein alpha subunits.Int J Biol Sci,1, 51–66.Google Scholar
  27. 27.
    Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F. (2002): Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.Genome Biol,3, RESEARCH0034.Google Scholar
  28. 28.
    Wieland, T., Lutz, S., Chidiac, P. (dy2007): Regulators of G protein signalling: a spotlight on emerging functions in the cardiovascular system.Curr Opin Pharmacol,7, 201–207.CrossRefGoogle Scholar
  29. 29.
    Wieland, T., Mittmann, C. (dy2003): Regulators of G-protein signalling: multifunctional proteins with impact on signalling in the cardiovascular system.Pharmacol Ther,97, 95–115.CrossRefGoogle Scholar
  30. 30.
    Wylam, M.E., Metkus, A. P., Umans, J. G., (2001): Nitric oxide dependent and independent effects of in vitro incubation or endotoxin on vascular reactivity in rat aorta.Life Sci,69, 455–467.PubMedCrossRefGoogle Scholar
  31. 31.
    Yang, X., Coriolan, D., Murthy, V., Schultz, K., Golenbock, D. T., Beasley, D. (2005): Proinflammatory phenotype of vascular smooth muscle cells: role of efficient Toll-like receptor 4 signaling.Am J Physiol Heart Circ Physiol,289 H1069–1076.PubMedCrossRefGoogle Scholar

Copyright information

© Universidad de Navarra 2009

Authors and Affiliations

  • M. C. Hendriks-Balk
    • 1
  • M. Tjon-Atsoi
    • 1
  • N. Hajji
    • 1
  • A. E. Alewijnse
    • 1
  • S. L. M. Peters
    • 1
    Email author
  1. 1.Department of Pharmacology & PharmacoltherapyAcademic Medical CenterAmsterdamThe Netherlands

Personalised recommendations