Advertisement

Journal of Physiology and Biochemistry

, Volume 65, Issue 1, pp 61–69 | Cite as

Hematological, immunological and neurochemical effects of chronic amphetamine treatment in male rats

  • E. Llorente-García
  • P. Abreu-González
  • M. C. González-HernándezEmail author
Article

Abstract

In the present study, we have analyzed the effect of chronic amphetamine sulfate (AMPH) treatment on haematological, immunological and neurochemical parameters in the male rat. AMPH increased the total peripheral leukocyte count, and altered its differential counts, decreasing lymphocytes and increasing neutrophils. Flow cytometry study showed that the decline in circulating lymphocytes was caused by the loss of a particular lymphocyte subset, B-cell, which reduced both in percentage and in absolute number by 50%. T-cell population increased by 15% but not in absolute number, however there was no difference in either CD4+ or CD8+ T lymphocyte subsets between experimental groups. Neurochemically, AMPH reduced norepinephrine (NE) and serotonin (5-HT) contents in the hypothalamus and increased dopamine (DA) content in the striatum. Chronic AMPH increased in a dose-dependent manner serum corticosterone levels, had no effect on circulating catecholamines, reduced adrenal weights, and did not affect spleen weights although reduced their cellularities. These results show that chronic AMPH have important effects on immune function, particularly on humoral immune response because it reduced the circulating B cell population by half. In addition, AMPH plays an important role in the redistribution and trafficking of leukocytes, and both effects seem to be mediated by sympathetic innervation of the lymphoid organs.

Key words

Amphetamine Leukocytes Lymphocytes subsets Corticosterone Brain 

Efectos hematológicos, inmunológicos y neuroquímicos del tratamiento crónico con anfetamina en la rata macho

Resumen

En este estudio analizamos el efecto del tratamiento crónico con sulfato de anfetamina (AMPH) administrada a través de sonda gástrica, sobre parámetros hematológicos, inmunológicos y neuroquímicos de la rata macho. La AMPH incrementó el numero total de leucocitos periféricos y alteró su formula diferencial, disminuyendo los linfocitos e incrementando los neutrófilos. El estudio de Citometría de Flujo mostró que el descenso linfocítico afectó fundamentalmente a la población de células B, que se redujo en un 50% tanto en porcentaje como en valores absolutos. La población de células T se incrementó en un 15%, pero no hubo diferencias entre las subpoblaciones TCD4+ o TCD8+. La AMPH redujo los contenidos de norepinefrina y serotonina en el hipotálamo e incrementó el contenido de dopamina en el estriado. Además elevó en forma proporcional a la dosis, los niveles plasmáticos de corticosterona, pero no tuvo efecto sobre las catecolaminas circulantes. También, el tratamiento crónico con AMPH redujo los pesos de las adrenales, no modificó el de los bazos aunque sí redujo su celularidad. Los resultados muestran que la anfetamina tiene importantes efectos sobre el sistema inmune particularmente sobre la respuesta inmune humoral, ya que reduce a la mitad la población de células B, y sobre la redistribución y tráfico linfocitarios, y que estos efectos parecen estar mediados por la inervación simpática de los órganos linfoides.

Palabras clave

Anfetamina Leucocitos Subpoblaciones linfocitarias Corticosterona Monoaminas cerebrales 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basso, A.M., Gioino, G., Molina, V.A., Cancela, L.M. (1999): Chronic amphetamine facilitates immunosuppression in response to a novel aversive stimulus.Pharmacol Biochem Behav,62, 307–314.PubMedCrossRefGoogle Scholar
  2. 2.
    Besedovsky, H.O., del Rey A. (1996): Immuneneuro-endocrine interactions: facts and hypotheses.Endocrine Rew,17, 64–102.Google Scholar
  3. 3.
    Connor, T.J. (2004): Methylenedioxymethamphetamine (MDMA, Ecstasy): a stressor on the immune system.Immunology,111, 357–367.PubMedCrossRefGoogle Scholar
  4. 4.
    Connor, T.J., Connelly, D.B., Kelly, J.P. (2001): Methylenedioxymethamphetamine (MDMA; Ecstasy) suppresses antigen specific IgG2a and INF-gamma production.Immunol Lett,78, 67–73.PubMedCrossRefGoogle Scholar
  5. 5.
    Connor, T.J., Kelly, J.P., Leonard, B.E. (2000): An assessment of the acute effects of the serotonin releasers methylenedioxymethanphetamine, methylenedioxyamphetamine and fenfluramine on immunity in rats.Immunopharmacology,46, 223–235.PubMedCrossRefGoogle Scholar
  6. 6.
    Di Chiara, G., Imperato, A. (1988): Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats.Proc Natl Acad Sci USA,85, 5274–5278.PubMedCrossRefGoogle Scholar
  7. 7.
    Engler, H., Dawils L., Hoves, S., Kurth, S., Stevenson, J.R., Schauenstein, K., Stefanski, V. (2004): Lffect of social stress on blood leucocyte distribution: the role of α- and β-adrenergic mechanisms.J Neuroimmunol,156, 153–162.PubMedCrossRefGoogle Scholar
  8. 8.
    Feria, M., Abreu, P., Abad, F., Sánchez, A. (1992): Relationship between autotomy behaviour and spinal cord monoaminergic levels in rats.Pain,48, 429–437.PubMedCrossRefGoogle Scholar
  9. 9.
    Fischman, M.W. (1987): Cocaine and the Amphetamines in Psychopharmacology: The third generation of progress. (Herbert Y. Meltzer, ed.). Raven Press, New York, pp 1543–1553.Google Scholar
  10. 10.
    Freire-Garabal, M., Balboa, J.L., Núñez, M.J., Castaño, M.T., Llovo, J.B., Fernández-Rial, J.C., Belmonte, A. (1991): Effects of amphetamine on T-cell immune response in mice.Life Sci,49, PL107-PL112.PubMedCrossRefGoogle Scholar
  11. 11.
    Gaillard, R.C. (2001): Interaction between the hypothalamo-pituitary-adrenal axis: the immunological system.Ann Endocrinol,62, 155–163.Google Scholar
  12. 12.
    Glac, W., Borman, A., Badtke, P., Stojek, W., Orlikowska, A., Tokarski J. (2006): Amphetamine enhances natural killer cytotoxic activity via β-adrenergic mechanism.J Physiol Pharmacol,57, 125–132.PubMedGoogle Scholar
  13. 13.
    Knych, E.T., Eisenberg, M. (1979): Effect of amphetamine on plasma corticosterone in the conscious rat.Neuroendocrinology,29, 110–118.PubMedCrossRefGoogle Scholar
  14. 14.
    Llorente, E., Brito, M.L., Machado, P., González, M.C. (2002): Effect of prenatal stress on the hormonal response to acute and chronic stress and on immune parameters in the offspring.J Physiol Biochem,58, 143–150.PubMedCrossRefGoogle Scholar
  15. 15.
    Lowy, M.T., Novotney, S. (1994): Methamphetamine-induced decrease in neural glucocorticoids receptors: relationship to monoamine levels.Brain Res,638, 175–181.PubMedCrossRefGoogle Scholar
  16. 16.
    Manzana, E.J.P., Chen, W.J.A., Champney, T.H. (2001): Acute melatonin and para-chloroamphetamine interactions on pineal, brain and serum serotonin levels as well as stress hormone levels.Brain Res,909, 127–137.PubMedCrossRefGoogle Scholar
  17. 17.
    Pacifici, R., Zuccaro, P., Farre, M., Pichini, S., Di Carlo, S., Roset, P.N., Ortuño, J., Pujadas, M., Bacosi, A.E., Menoyo, Segura, J., de la Torre, R. (2001): Effects of repeated doses of MDMA (ecstasy) on cell-mediated immune response in humans.Life Sci,69, 2931–2941.PubMedCrossRefGoogle Scholar
  18. 18.
    Tassin, J.P. (2008): Uncoupling between noradrenergic and serotonergic neurons as a molecular basis of stable changes in behavior induced by repeated drugs of abuse.Biochem Pharmacol,75, 85–97.PubMedCrossRefGoogle Scholar

Copyright information

© Universidad de Navarra 2009

Authors and Affiliations

  • E. Llorente-García
    • 1
  • P. Abreu-González
    • 1
  • M. C. González-Hernández
    • 1
    Email author
  1. 1.Departmento de Fisiología. Facultad de MedicinaUniversidad de La LagunaSpain

Personalised recommendations