Journal of Physiology and Biochemistry

, Volume 65, Issue 1, pp 25–32 | Cite as

A comparison between CLNA and CLA effects on body fat, serum parameters and liver composition

  • J. Miranda
  • A. Fernández-Quintela
  • M. T. Macarulla
  • I. Churruca
  • C. García
  • V. M. Rodríguez
  • E. Simon
  • M. P. PortilloEmail author


The potential of conjugated linoleic acid (CLA) as an anti-obesity molecule for humans is still a matter for debate. Thus, a great deal of scientific work is focussed on the research of new effective molecules without deleterious effects on health. The aim of the present work was to analyse the effects of jacaranda seed oil, rich in a conjugated linolenic acid (CLNA), jacaric acid (cis-8,trans-10,cis-12), on body fat, serum parameters and liver composition in rats, and to compare these effects with those oftrans-10,cis-12 CLA. Twenty-six male Wistar rats were divided into three groups fed with high-fat diets, supplemented or not (control group) with 0.5%trans-10,cis-12 CLA (CLA group) or 0.5% jacaric acid (CLNA group) for 7 weeks. No statistical differences in food intake or in final body weight were found. Whereas CLA reduced adipose tissue size, CLNA did not. Both CLA and CLNA significantly reduced non-HDL-cholesterol. In spite of a lack of significant changes in glucose and insulin levels, HOMA-IR index was significantly increased, as well as did non-esterified fatty acid levels in CLNA-fed rats. No changes in liver composition were observed. In conclusion, under our experimental conditions, jacaric acid, unlike CLA, does not show a body-fat lowering effect. Even though it leads to a healthy lipoprotein profile, it impairs insulin function. Consequently, it cannot be proposed as an anti-obesity molecule.

Key words

Conjugated linolenic acid Conjugated linoleic acid Jacaric acid Body fat Liver 

Comparación entre los efectos de CLA y CLNA sobre la grasa corporal, parámetros séricos y composición del hígado


El potencial del ácido linoleico conjugado (CLA) como molécula anti-obesidad para seres humanos sigue siendo una cuestión en debate. Por ello, gran cantidad de trabajos científicos se centra en la investigación de nuevas moléculas eficaces y sin efectos nocivos sobre la salud. El objectivo del presente trabajo fue estudiar, en rata, los efectors del aceite de semillas de jacaranda, rico en un ácido linolénico conjugado (CLNA), el ácido jacárico (cis-8,trans-10,cis-12), sobre la grasa corporal, parámetros séricos y la composición del hígado, y comparar estos efectos con los deltrans-10,cis-12, CLA. Se utilizaron 26 ratas Wistar macho divididas en tres grupos que fueron alimentados durante 7 semanas con dietas hipergrasas, suplementadas o no (grupo control) al 0,5% con eltrans-10,cis-12 CLA (grupo CLA) o al 0,5% con el ácido jacárico (grupo CLNA). No se encontraron diferencias significativas en la ingesta de dieta, ni en el peso corporal final, ni en la composición del hígado. El CLA redujo la masa adiposa, pero no lo hizo el CLNA. Ambos disminuyeron significativamente el colesterol no-HDL. A pesar de la ausencia de cambios significativos en la glucemia e insulinemia, el índice HOMA-IR y los niveles séricos de AGL aumentaron significativamente en las ratas alimentadas con CLNA. En conclusión, en nuestras condiciones experimentales, el ácido jacárico, a diferencia del CLA, no muestra un efecto reductor de la grasa corporal. A pesar de que mejora el perfil de lipoproteínas, altera la función insulínica. Por lo tanto, este CLNA no puede ser propuesto como una molécula antiobesidad.

Palabras clave

Ácido linolénico conjugado Ácido linoleico conjugado Ácido jacárico Grasa corporal Hígado 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arao, K., Wang, Y., Inoue, N., Hirata, J., Cha, J., Nagao, K. and Yanagita T. (2004): Dietary effect of pomegranate seed oil rich in 9cis, 11 trans, 13cis conjugated linolenic acid on lipid metabolism in obese, hyperlipidemic OLETF rats.Lipids Health Dis,3, 24.PubMedCrossRefGoogle Scholar
  2. 2.
    Bhattacharya, A., Banu, J., Rahman, M., Causey, J. and Fernandes G. (2006): Biological effects of conjugated linoleic acids in health and disease.J. Nutr Biochem,17, 789–810.PubMedCrossRefGoogle Scholar
  3. 3.
    Bligh, E.G. and Dyer, W.J. (1959): A rapid method of total lipid extraction and purification.Can J Biochem Physiol,37, 911–917.PubMedGoogle Scholar
  4. 4.
    Bonora, E., Targher, G., Alberiche, M., Bonadonna, R.C., Saggiani, F., Zenere, M.B., Monauni, T. and Muggeo, M. (2000): Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity.Diabetes Care,23, 57–63.PubMedCrossRefGoogle Scholar
  5. 5.
    Choi, N., Kwon, D., Yun, S., Jung, M. and Shin, H. (2004): Selectively hydrogenated soybean oil with conjugated linoleic acid modifies body composition and plasma lipids in rats.J Nutr Biochem,15, 411–417.PubMedCrossRefGoogle Scholar
  6. 6.
    Churruca, I., Fernández-Quintela, A. and Portillo, M.P. (2009): Conjugated linoleic acid isomers: differences in metabolism and biological effects.Biofactors,35, 105–111.PubMedCrossRefGoogle Scholar
  7. 7.
    Dhar, P. and Bhattacharyya, D. (1998): Nutritional characteristics of oil containing conjugated octadecatrienoic fatty acid.Ann Nutr Metab,42, 290–296.PubMedCrossRefGoogle Scholar
  8. 8.
    Evans, M., Brown, J. and McIntosh, M. (2002): Isomer-specific effects of conjugated linoleic acid (CLA) on adiposity and lipid metabolism.J Nutr Biochem,13, 508–516.PubMedCrossRefGoogle Scholar
  9. 9.
    Folch, J., Lees, M. and Sloane, G.H. (1957): A simple method for the isolation and purification of total lipides from animal tissues.J Biol Chem,26, 497–509.Google Scholar
  10. 10.
    Griinari J., Cori, B., Lacy, S., Chouinard, P., Nurmela, K. and Bauman D. (2000): Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by delta-9 desaturase.J Nutr,130, 2285–2291.PubMedGoogle Scholar
  11. 11.
    Hontecillas, R., Diguardo, M., Duran, E., Orpi, M. and Bassaganya-Riera, J. (2008). Catalpic acid decreases abdominal fat deposition, improves glucose homeostasis and upregulates PPAR alpha expression in adipose tissue.Clin Nutr,27, 764–772.PubMedCrossRefGoogle Scholar
  12. 12.
    Koba, K., Akahoshi, A., Yamasaki, M., Tanaka, K., Yamada, K., Iwata, T., Kamegai, T., Tsutsumi, K. and Sugano M. (2002): Dietary conjugated linolenic acid in relation to CLA differently modifies body fat mass and serum and liver lipid levels in rats.Lipids,37, 343–350.PubMedCrossRefGoogle Scholar
  13. 13.
    Koba, K., Imamura, J., Akashoshi, A., Kohno-Murase, J., Nishizono, S., Iwabuchi, M., Tanaka, K. and Sugano, M. (2007): Genetically modified rapeseed oil containing cis-9,trans-11,cis-13-octadecatrienoic acid affects body fat mass and lipid metabolism in mice.J Agric Food Chem,55, 3741–3748.PubMedCrossRefGoogle Scholar
  14. 14.
    Larsen, T.M., Toubro, S. and Astrup, A. (2003): Efficacy and safety of dietary supplements containing CLA for the treatment of obesity: evidence from animal and human studies.J Lipid Res,44, 2234–2241.PubMedCrossRefGoogle Scholar
  15. 15.
    Lowry, O., Rosebrough, N., Farr, A. and Randall, R. (1951): Protein measurement with the Folin phenol reagent.J Biol Chem,193, 265–275.PubMedGoogle Scholar
  16. 16.
    Martin, J.C. and Valeille, K. (2002): Conjugated linoleic acids: all the same or to everyone its function?Reprod Nutr Develop,42, 525–536.CrossRefGoogle Scholar
  17. 17.
    Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F. and Turner, R.C. (1985): Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.Diabetologia,28, 412–419.PubMedCrossRefGoogle Scholar
  18. 18.
    Navarro, V., Fernández-Quintela, A., Churruca, I. and Portillo, M. P. (2006): The body fat-lowering effect of linoleic acid: a comparison between animal and human studies.J Physiol Biochem,62, 137–148.PubMedCrossRefGoogle Scholar
  19. 19.
    Pariza, M. (2004): Perspective on the safety and effectiveness of conjugated linoleic acid.Am J Clin Nutr,79, 1132S-1136S.PubMedGoogle Scholar
  20. 20.
    Park, Y. and Pariza, M.W. (2007): Mechanisms of body fat modulation by conjugated linoleic acid (CLA).Food Res Intl,40, 311–323.CrossRefGoogle Scholar
  21. 21.
    Park, Y., Storkson, J., Liu, W., Albright, K., Cook, M. and Pariza, M. (2004): Structure-activity relationships of conjugated linoleic acid and its cognates in inhibiting heparin-releasable lipoprotein lipase and glycerol release from fully differentiated 3T3-L1 adipocytes.J Nutr Biochem,15, 561–568.PubMedCrossRefGoogle Scholar
  22. 22.
    Reeves, P.G., Nielsen, F.H. and Fahey, Jr G.C. (1993): AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76 rodent diet.J Nutr,123, 1939–1951.PubMedGoogle Scholar
  23. 23.
    Salas-Salvadó, J., Márquez-Sandoval, F. and Bulló, M. (2006): Conjugated linoleic acid intake in humans: a systematic review focusing on its effect on body composition, glucose, and lipid metabolism.Crit Rev Food Sci Nutr,46, 479–488.PubMedCrossRefGoogle Scholar
  24. 24.
    Terpstra, A. (2004): Effect of conjugated linoleic acid on body composition and plasma lipids in humans: an overview of the literature.Am J Clin Nutr,79, 352–361.PubMedGoogle Scholar
  25. 25.
    Wang, Y.W. and Jones, P.J. (2004): Conjugated linoleic acid and obesity control: efficacy and mechanisms.Int J Obes Relat Metab Disord,28, 941–955.PubMedCrossRefGoogle Scholar
  26. 26.
    Yamasaki, M., Kitagawa, T., Koyanagi, N., Chujo, H., Maeda, H., Kohno-Murase, J., Imamura, J., Tachibana H. and Yamada, K. (2006): Dietary effect of pomegranate seed oil on immune function and lipid metabolism in mice.Nutrition,22, 54–59.PubMedCrossRefGoogle Scholar
  27. 27.
    Yamasaki, M., Mansho, K., Ogino, Y., Kasai, M., Tachibana, H. and Yamada, K. (2000): Acute reduction of serum leptin level by dietary conjugated linoleic acid in Sprague-Dawley rats.J Nutr Biochem,11, 467–471.PubMedCrossRefGoogle Scholar

Copyright information

© Universidad de Navarra 2009

Authors and Affiliations

  • J. Miranda
    • 1
  • A. Fernández-Quintela
    • 1
  • M. T. Macarulla
    • 1
  • I. Churruca
    • 1
  • C. García
    • 2
  • V. M. Rodríguez
    • 1
  • E. Simon
    • 1
  • M. P. Portillo
    • 1
    Email author
  1. 1.Department of Nutrition and Food Sciences, Faculty of PharmacyUniversity of the Basque CountryVitoriaSpain
  2. 2.Área de Nuevos Productos y Biomoléculas, Unidad de Investigación AlimentariaAZTI Tecnalia, Parque Tecnológico de Bizkaia, DerioBizkaiaSpain

Personalised recommendations