Skip to main content
Log in

Ar doping of CH4 plasmas for carbon film deposition

  • Plasma Technology
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

We have modeled the gas-phase chemistry of a typical radio frequency CH4/Ar plasma used for the deposition of diamond and diamond-like carbon films. Our simulations show that the most abundant carbon containing radical is CH3 in pure methane discharges, but it is the carbon dimer C2 in discharges of methane highly diluted by argon. Thus we propose that the gaseous precursor of the film is CH3 in methane plasmas, and C2 in CH4/Ar plasmas. This proposal resolves outstanding discrepancies and is consistent with recent experiments demonstrating the deposition of diamond from hydrogen deficient plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Angus and C.C. Hayman: Science241 (1988) 913.

    Article  ADS  Google Scholar 

  2. J.M. Albella et al.: J. Appl. Phys.74 (1993) 3752.

    Article  ADS  Google Scholar 

  3. D.M. Gruen, C.D. Zuiker, A.R. Krauss, X. Pan: J. Vac. Sci. Technol. A13 (1995) 1628.

    Article  ADS  Google Scholar 

  4. C. Riccardi, R. Barni, F. DeColle, M. Fontanesi: IEEE Trans. On Plasma Science28 (2000) 278.

    Article  ADS  Google Scholar 

  5. W. Zhu et al.: J. Appl. Phys.68 (1990) 1489.

    Article  ADS  Google Scholar 

  6. H.C. Shih et al.: Diamond Relat. Mater.2 (1993) 531.

    Article  Google Scholar 

  7. P. Tosi, D. Bassi, B. Brunetti, F. Vecchiocattivi: Int. J. Mass Spect. Ion Proc.149/150 (1995) 345.

    Article  Google Scholar 

  8. T.G. McCauley, D.M. Gruen, A.R. Krauss: Appl. Phys. Lett.73 (1998) 1646.

    Article  ADS  Google Scholar 

  9. SIGLO Dtabase, http://www.csn.net/~leanne/index.htm

  10. A. Rhallabi and Y. Catherine: IEEE Trans. On Plasma Science19 (1991) 270.

    Article  ADS  Google Scholar 

  11. H. Toyoda, H. Kojima, H. Sugai: Appl. Phys. Lett.13 (1989) 1292.

    Google Scholar 

  12. G. Sundström et al.: Science263 (1994) 785.

    Article  ADS  Google Scholar 

  13. J. Semaniak et al.: Astrophys. J.498 (1998) 886.

    Article  ADS  Google Scholar 

  14. KINEMA Database, http://www.csn.net/~morgan/database.htm

  15. D. Edelson, D. Flamm, J. Appl. Phys.56 (1984) 1522.

    Article  ADS  Google Scholar 

  16. GAPHYOR Database, http://www.lpgp23.lpgp.u-psud.fr/

  17. NIST Database, http://www.nist.gov/cstl/div386/ckmech.htm

  18. The list is available from the authors, at http://pcpllab1.mi.infn.it/gamberalewww/chem/rate.ps

  19. N. Mutsukura, K. Yoshida: Diamond Rel. Mater.5 (1996) 919.

    Article  Google Scholar 

  20. Y.S. Han, Y.K. Kim, J.Y. Lee: Thin Solid Films310 (1997) 39.

    Article  ADS  Google Scholar 

  21. A.N. Goyette et al.: J. Vac. Sci. Technol. A16 (1998) 337.

    Article  ADS  Google Scholar 

  22. A.N. Goyette et al.: J. Phys. D31 (1998) 1975.

    Article  ADS  Google Scholar 

  23. A.V. Palnichenko et al.: Nature402 (1998) 162.

    ADS  Google Scholar 

  24. N. Mutsukura and K. Saitoh: J. Vac. Sci. Technol. A14 (1996) 2666.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riccardi, C., Barni, R., Fontanesi, M. et al. Ar doping of CH4 plasmas for carbon film deposition. Czech. J. Phys. 50 (Suppl 3), 389 (2000). https://doi.org/10.1007/BF03165916

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1007/BF03165916

Keywords

Navigation