Skip to main content
Log in

A brain uptake study of [1-11C]hexanoate in the mouse: The effect of hypoxia, starvation and substrate competition

  • Short Communication
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

We evaluated the potential of sodium [1-11C]hexanoate (11C-HA) as a radiopharmaceutical with which to assess oxidative metabolism of the brain by PET.11C-HA, sodium [1-14C]acetate and [3H]deoxyglucose were simultaneously injected into mice under control, hypoxic and starving conditions. In the control, the brain uptake of11C was maximal at 3 min (% ID/g = 2.2–2.5), being twice as high as that of14C, followed by a gradual clearance. The time-radioactivity curve of11C was similar to that of14C. Hypoxia enhanced the brain uptake of3H, but not of either11C or14C. Starvation enhanced the brain uptake of3H and11C. The clearance rate of11C was not significantly affected by either condition. In the control brain at 3 min postinjection of HA, 65% of the total radioactivity was detected as labeled glutamate and glutamine, which was gradually decreased by 47% at 30 min. The brain to blood ratios of11C-HA at 3 min were significantly reduced by butyrate, hexanoate and octanoate loading but not by that with other monocarboxylic acids or ketone bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Blomqvist G, Seitz RJ, Sjögren I, Halldin C, Stone-Elander S, Widén L, et al. Regional cerebral oxidative and total glucose consumption during rest and activation studied with positron emission tomography.Acta Physiol Scand 151: 29–43, 1994.

    Article  PubMed  CAS  Google Scholar 

  2. Fukuyama H, Ogawa M, Yamauchi H, Yamaguchi S, Kimura J, Yonekura Y, et al. Altered cerebral energy metabolism in Alzheimer’s disease: a PET study.J Nucl Med 35: 1–6, 1994.

    PubMed  CAS  Google Scholar 

  3. Lear JL, Ackerman RF. Comparison of cerebral glucose metabolic rates measured with fluorodeoxyglucose and glucose labeled in the 1, 2, 3–4, and 6 positions using double label quantitative digital autoradiography.J Cereb Blood Flow Metab 8: 575–585, 1988.

    PubMed  CAS  Google Scholar 

  4. Hawkins RA, Mans AM, Davis DW, Vina JR, Hibbard LS. Cerebral glucose use measured with [14C]glucose labeled in the 1, 2, or 6 position.Am J Physiol 248: C170-C176, 1985.

    PubMed  CAS  Google Scholar 

  5. Badar-Goffer RS, Bachelard HS, Morris PG. Cerebral metabolism of acetate and glucose studies by13C-n.m.r. spectroscopy. A technique for investigating metabolic compartmentation in the brain.Biochem J 266: 133–139, 1990.

    PubMed  CAS  Google Scholar 

  6. Cerdan S, Kunnecke B, Seeling J. Cerebral metabolism of [1,2-13C2]acetate as detected byin vivo andin vitro 13C NMR.J Biol Chem 265: 12916–12926, 1990.

    PubMed  CAS  Google Scholar 

  7. Muir D, Berl S, Clarke DD. Acetate and fluoroacetate as possible markers for glial metabolismin vivo.Brain Res 280: 336–340, 1986.

    Article  Google Scholar 

  8. Lear JL, Kasliwal R, Duryea RA. Use of radiolabeled acetate to evaluate the rate of clearance of cerebral oxidative metabolites.J Nucl Med 35: 198P, 1994 (abstract).

    Google Scholar 

  9. Oldendorf WH. Carrier-mediated blood-brain barrier trans- port of short-chain monocarboxylic organic acids.Am J Physiol 224: 1450–1453, 1973.

    PubMed  CAS  Google Scholar 

  10. Ogawa K, Niishawa K, Sasaki M, Nozaki T. Malonic ester synthesis of various α-(11,14C-methyl)-carboxylic acids and related compounds.J Label Compds Radiopharm 30: 417—419, 1991 (abstract).

    Google Scholar 

  11. Ogawa K, Nozaki T, Sasaki T, Ishiwata K, Senda M. Comparison of biodistribution in 2-metyl-fatty acids la- beled at different positions.J Label Compds Radiopharm 35: 343–345, 1994 (abstract).

    Google Scholar 

  12. Beattie DS, Basford RE. Brain mitochondria-III Fatty acid oxidation by bovine brain mitochondria.J Neurochem 12: 103–111, 1965.

    Article  PubMed  CAS  Google Scholar 

  13. Nariai T, DeGeorge JJ, Greig NH, Genka S, Rapoport SI, Purdon AD. Differences in rates of incorporation of intravenously injected radiolabeled fatty acids into phospholipids of intracerebrally implanted tumor and brain in awake rats.Clin Exp Metastasis 12: 213–225, 1994.

    Article  PubMed  CAS  Google Scholar 

  14. Ereed LM, Wakabayashi S, Bell JM, Rapoport SI. Effect of inhibition of β-oxidation on incorporation of [U-14C]palmitate and [1-14C]arachidonate into brain lipids.Brain Res 645: 41–48, 1994.

    Article  Google Scholar 

  15. Cremer JE, Teal HM, Heath DF, Cavanagh JB. The influ- ence of portocaval anastomosis on the metabolism of labeled octanoate, butyrate and leucine in rat brain.J Neurochem 28: 215–222, 1974.

    Article  Google Scholar 

  16. Kuge Y, Yajima K, Kawashima H, Yamazaki H, Hashimoto N, Miyake Y. Brain uptake and metabolism of [1-11C]octanoate in rats: Pharmacokinetic basis for its application as a radiopharmaceutical for studying brain fatty acid metabolism.Ann Nucl Med 9: 137–142, 1995.

    Article  PubMed  CAS  Google Scholar 

  17. Rowley H, Collins R. [1-14C]Octanoate: a fast functional maker of brain activity.Brain Res 335: 326–329, 1985.

    Article  PubMed  CAS  Google Scholar 

  18. Ishiwata K, Ishii K, Ogawa K, Sasaki T, Toyama H, Ishii S, et al. Synthesis and preliminary evaluation of [1-11C]hexanoate as a PET tracer of fatty acid metabolism.Ann Nucl Med 9: 51–57, 1995.

    Article  PubMed  CAS  Google Scholar 

  19. Sakuragawa N, Matsui A, Matsuzaka T, Kono Y, Ido T, Ishiwata K, et al. Enhanced glucose metabolism and im- paired placental function in hypoxic pregnant rats.Nucl Med Biol 15: 645–650, 1988.

    CAS  Google Scholar 

  20. Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill Jr GF. Brain Metabolism during fasting.J Clin Invest 46: 1589–1595, 1967.

    Article  PubMed  CAS  Google Scholar 

  21. Hawkins RA, Williamson DH, Krebs HA. Ketone-body utilization by adult and suckling rat brainin vivo.Biochem J 122: 13–18, 1971.

    PubMed  CAS  Google Scholar 

  22. Ruderman NB, Ross PS, Berger M, Goodman MN. Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats.Biochem J 138: 1–10, 1974.

    PubMed  CAS  Google Scholar 

  23. Gjedde A, Crone C. Induction processes in blood-brain transfer of ketone bodies during starvation.Am J Physiol 229: 1165–1169, 1975.

    PubMed  CAS  Google Scholar 

  24. Hawkins RA, Biebuyck JF. Ketone bodies are selectively used by individual brain regions.Science 205: 325–327, 1979.

    Article  PubMed  CAS  Google Scholar 

  25. Ishiwata K, Ishii S, Senda M. Successive preparation of C- 11 labeled sodium acetate and/or sodium [1-11C]hexanoate.Appl Radiat Isot 46: 1035–1037, 1995.

    Article  CAS  Google Scholar 

  26. Weiss RG, Chacko VP, Gerstenblith G. Fatty acid regulation of glucose metabolism in the intact beating rat heart assessed by carbon-13 NMR spectroscopy: the critical role of pyruvate dehydrogenase.J Mol Cell Cardiol 21: 469–478, 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishiwata, K., Ishii, K., Ogawa, K. et al. A brain uptake study of [1-11C]hexanoate in the mouse: The effect of hypoxia, starvation and substrate competition. Ann Nucl Med 10, 265–270 (1996). https://doi.org/10.1007/BF03165404

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03165404

Key words

Navigation