Skip to main content
Log in

Uptake and washout of I-123-MIBG in neuronal and non-neuronal sites in rat hearts: Relationship to renal clearance

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

We investigated the uptake and washout of I-123-metaiodobenzylguanidine (MIBG) in neuronal (both intra- and extravesicular) and non-neuronal sites in the heart and its relationship to renal clearance. Acute renal failure was induced in rats by ligating the renal vessels, and the findings were compared with those of sham-operated rats. Each group consisted of control, reserpine-treated and 6-hydroxydopamine (6-OHDA)-treated subgroups. Rats were sacrificed at 10 minutes and 4 hours after injection of MIBG. MIBG activity was calculated in specimens of heart, spleen, lung and blood. At 10 minutes, no significant difference in MIBG uptake in the heart was observed among the subgroups or between sham-operated and renal failure rats despite a significantly higher blood MIBG activity in the latter. At 4 hours, however, the hearts of both reserpine-treated and 6-OHDA-treated rats showed significantly lower MIBG uptake than control rats. Furthermore, the hearts of renal failure rats showed higher MIBG uptake in the control and reserpine-treated rats than in the corresponding subgroups in sham-operated rats. Intra and extravesicular neuronal uptake of MIBG in the heart were estimated using control, reserpine-treated and 6-OHDA-treated rats. Vesicular uptake values were similar in both the sham-operated group (0.51% ID/g) and the renal failure group (0.44% ID/g). But extravesicular neuronal uptake values were quite different in the renal failure group (0.86% ID/g) and the sham-operated group (0.19% ID/g). In conclusion, uptake to and washout from extravesicular neuronal sites may depend on the concentration of MIBG in the blood or the state of renal clearance, but vesicular uptake may be independent of these factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shapiro B, Copp JE, Sisson JC, Eyre PL, Wallis J, Beierwaltes WH. Iodine-131 -metaiodobenzylguanidine for the locating of suspected pheochromocytoma: experience in 400 cases.J Nucl Med 26: 576–585, 1985.

    PubMed  CAS  Google Scholar 

  2. Kimmig B, Brandeis WE, Eisenhaut M, Bubeck B, Hermann HJ, Winkle KZ. Scintigraphy of neuroblastoma with I-131-meta-iodobenzylguanidine.J Nucl Med 25: 773–775, 1984.

    PubMed  CAS  Google Scholar 

  3. Gill JS, Hunter GJ, Gane G, Camm AJ. Heterogeneity of the human myocardial sympathetic innervation:In vivo demonstration by iodine 123-labeled metaiodobenzylguanidine scintigraphy.Am Heart J 126 (2): 390–398, 1993.

    Article  PubMed  CAS  Google Scholar 

  4. Jaques S, Tobes MC, Sisson JC. Sodium dependency of uptake of norepinephrine and m-iodobenzylguanidine into cultured human pheochromocytoma cells: Evidence for uptake-one.Cancer Res 47: 3920–3928, 1987.

    PubMed  Google Scholar 

  5. Tobes MC, Jaques S, Wieland DM, Sisson JC. Effect of uptake-one inhibitors on the uptake of norepinephrine and metaiodobenzylguanidine.J Nucl Med 26: 897–907, 1985.

    PubMed  CAS  Google Scholar 

  6. Smet LA, Loesberg C, Janssen M, Metwally EA, Huiskamp R. Active uptake and extravesicular storage of m-iodobenzylguanidine in human neuroblastoma SK-N-SH cells.Cancer Res 49: 2941–2944, 1989.

    Google Scholar 

  7. Gasnier B, Roisin MP, Scherman D, et al. Uptake of metaiodobenzylguanidine by bovine chromaffin granule membranes.Mol Pharmacol 29: 275–280, 1986.

    PubMed  CAS  Google Scholar 

  8. Nakajo M, Shimabukuro K, Yoshimura H, Yonekura R, Nakabeppu Y, Tanoue P, et al. Iodine-131 metaiodobenzyl- guanidine intra- and extravesicular accumulation in the rat heart.J Nucl Med 27: 84–89, 1986.

    PubMed  CAS  Google Scholar 

  9. Glowniak JV, Kilty JE, Amara SG, Hoffman BJ, Turner FE. Evaluation of metaiodobenzylguanidine uptake by the norepinephrine, dopamine and serotonin transporters.J Nucl Med 34: 1140–1146, 1993.

    PubMed  CAS  Google Scholar 

  10. Sisson JC, Wieland DM, Sherman P, Mangner TJ, Tobes MC, Jacques S Jr. Metaiodobenzylguanidine as an index of the adrenergic nervous system integrity and function.J Nucl Med 28: 1620–1624, 1987.

    PubMed  CAS  Google Scholar 

  11. Rand MJ, Jurevies H. The pharmacology of Rauwlfia alkaloids.In Handbook of Experimental Pharmacology, Born GUR, Eichler O, Rensselaer AF, Herken H, Welch AD (eds.), New York, Springer-verlag, pp. 76–159, 1977.

    Google Scholar 

  12. Maxwell RA, Wastila WB. Adrenergic neuron blocking drugs.In Handbook of Experimental Pharmacology, Born GUR, Eichler O, Rensselaer AF, Herken H, Welch AD (eds.), New York, Springer-verlag, pp. 160–261, 1977.

    Google Scholar 

  13. Eisenhofer G, Sion DH, Kopin IJ, Miletich R, Kirk KL, Finn R, et al. Neuronal uptake and metabolism of 2- and 6-fluorodopamine: false neurotransmitters for positron emission tomographic imaging of sympathetically innervated tissue.J Pharmacol Exp Ther 248: 419–427, 1989.

    PubMed  CAS  Google Scholar 

  14. Bhagat B, Shideman FE. Repletion of cardiac catecholamines in the rat: Importance of the adrenal medulla and synthesis from precursors.J Pharmacol Exp Ther 143: 77–81, 1964.

    PubMed  CAS  Google Scholar 

  15. Jonsson G. Studies on the mechanism of 6-hydroxydopamine cytotoxicity.Med Biol 54: 406–420, 1976.

    PubMed  CAS  Google Scholar 

  16. Kawa A, Kamisaki T, Ariyama T, Kawabata T, Maeda Y, Okamoto O, et al. The effects of intraperitoneal injection of 6-hydroxydopamine on the turnover and the levels of the brain catecholamines and the levels of plasma corticosterone in rats.Clin Exp Phar & Phys 6: 123–128, 1979.

    Article  CAS  Google Scholar 

  17. Sudo A. Decrease in adrenaline content of various organs of the rat after 6-hydroxy-dopamine.Eur J Phar 114: 79–83, 1985.

    Article  CAS  Google Scholar 

  18. Priola DV, O’brien WJ, Dail WG, Simson WW. Cardiac catecholamine stores after cardiac sympathectomy, 6-OHDA, and cardiac denervation.Am J Physiol 240: H889-H895, 1981.

    PubMed  CAS  Google Scholar 

  19. Wieland DM, Brown LE, Rogers WL, Worthington KC, Wu JL, Clinthorne NH, et al. Myocardial imaging with a radioiodinated norepinephrine storage analog.J Nucl Med 22: 22–31, 1981.

    PubMed  CAS  Google Scholar 

  20. Mangner TJ, Tobes MC, Wieland DW, Sisson JC, Shapiro B. Metabolism of iodine-131 metaiodobenzyl-guanidine in patients with metastatic pheochromocytoma.J Nucl Med 27: 37–44, 1986.

    PubMed  CAS  Google Scholar 

  21. Kline RC, Swanson DP, Wieland DM, Thrall JH, Gross MD, Pitt B, et al. Myocardial imaging in man with I-123 meta-iodobenzylguanidine.J Nucl Med 22: 129–132, 1981.

    PubMed  CAS  Google Scholar 

  22. Blake GM, Lewington VJ, Zivanovic MA, Ackery DM. Glomerular filtration rate and kinetics of I-123-metaiodo-benzylguanidine.Eur J Nucl Med 15: 618–623, 1989.

    PubMed  CAS  Google Scholar 

  23. Tobes MC, Fig LM, Carey J, Geatti O, Sisson JC, Shapiro B. Alteration of iodine-131 MIBG biodistribution in an anephric patient: comparison to normal and impaired renal function.J Nucl Med 30: 1476–1482, 1989.

    PubMed  CAS  Google Scholar 

  24. Arbab AS, Koizumi K, Takano H, Uchiyama G, Arai T, Mera K. Parameters of dynamic and static iodine-123-MIBG cardiac imaging.J Nucl Med 36: 962–968, 1995.

    PubMed  CAS  Google Scholar 

  25. Bhagat B. Effect of reserpine on cardiac catecholamines.Life Sciences 3: 1361–1370, 1964.

    Article  PubMed  CAS  Google Scholar 

  26. Lashford LS, Hancock JP, Kemshead JT. Metaiodobenzyl- guanidine (mlBG) uptake and storage in the human neuroblastoma cell line SK-N-BE(2C). IntJ Cancer 47: 105–109, 1991.

    Article  PubMed  CAS  Google Scholar 

  27. Montaldo PG, Carbone R, Lanciotti M, Ponzoni M, Cornaglia-Ferraris.In vitro pharmacology of metaiodo-benzyl-guanidine uptake, storage and release in human neuroblastoma cells.J Nucl Biol Med 35: 195–198, 1991.

    PubMed  CAS  Google Scholar 

  28. Philippu A, Becker H, Burger A. Effects of drugs on the uptake of noradrenaline by isolated hypothalamic vesicles.Europ J Pharmacol 6 (1): 96–101, 1969.

    Article  CAS  Google Scholar 

  29. Iversen LL. The uptake of biogenic amines.In Biogenic Amines and Physiological Membranes in Drug Therapy, Biel JH, Abood LG (eds.), Part B, New York, Marcel Dekker Inc., pp. 259–327, 1971.

    Google Scholar 

  30. Chang P, Feam HJ. Depletion of catecholamines from rat heart by phenoxybenzamine, tyramine and reserpine.Aus J Exp Bio Med Sci 47: 319–323, 1969.

    Article  CAS  Google Scholar 

  31. Sisson JC, Shapiro B, Meyers L, Mallette S, Mangner TJ, Wieland DM, et al. Meta-iodobenzylguanidine to map scintigraphically the adrenergic nervous system in man.J Nucl Med 28: 1625–1634, 1987.

    PubMed  CAS  Google Scholar 

  32. Dae MW, Marco TD, Botnovinick EH, O’Connell JW, Hattner RS, Huberty JP, et al. Scintigraphic assessment of MIBG uptake in globally denervated human and canine hearts—implications for clinical studies.J Nucl Med 33: 1444–1450, 1992.

    PubMed  CAS  Google Scholar 

  33. Glowniak JV, Wilson RA, Joyce ME, Turner FE. Evaluation of metaiodobenzylguanidine heart and lung extraction fraction by first-pass analysis in pigs.J Nucl Med 33: 716–723, 1992.

    PubMed  CAS  Google Scholar 

  34. Pharmacology of antihypertension agents.In Role of Catecholamines in Cardiovascular Disease, Bhagat BD (ed.), Illinois, Springfield, pp. 163–184, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbab, A.S., Koizumi, K. & Araki, T. Uptake and washout of I-123-MIBG in neuronal and non-neuronal sites in rat hearts: Relationship to renal clearance. Ann Nucl Med 10, 211–217 (1996). https://doi.org/10.1007/BF03165394

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03165394

Key words

Navigation