Skip to main content
Log in

A stereotaxic method of anatomical localization by means of H2 15O positron emission tomography applicable to the brain activation study in cats: Registration of images of cerebral blood flow to brain atlas

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

In the neuronal activation study of normal animals, precise anatomical correlation, preferentially to a detailed brain atlas, is required for the activation foci co-registration. To obtain precise regional correlation between H2 15O-PET images and the brain atlas, a method of stereotaxic image reorientation was applied to an activation study with vibrotactile stimulation. Cats anesthetized with halothane underwent repeated measurements of regional cerebral blood flow (rCBF) in the resting condition and during vibration of the right forepaw. The image set was adjusted three-dimensionally to the atlas. The postmortem brain was sectioned according to the atlas planes. The activated areas were determined by the stimulus-minus-resting subtraction images, and the areas were projected to the atlas. The PET images of the cat brain were compatible both to the postmortem brain slices and to the brain atlas. The activation foci obtained from the subtraction images corresponded to the area around the coronal sulcus, which is electrophysiologically known as the primary sensory area as described in the atlas. There were precise regional correlations between the PET image and anatomy in a PET activation study of the cat by means of stereotaxic image reorientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohm C, Greitz T, Kingsley D, Berggren BM, Olsson L. Adjustable computerized stereotaxic brain atlas for transmission and emission tomography.AJNR 4:731–733, 1983.

    PubMed  CAS  Google Scholar 

  2. Fox PT, Perlmutter JS, Raichle ME. A stereotactic method of anatomical localization for positron emission tomography.J Comput Assist Tomogr 9: 141–153, 1985.

    Article  PubMed  CAS  Google Scholar 

  3. Dann R, Hoford J, Kovacic S, Reivich M, Bajcsy R. Evaluation of elastic matching system for anatomic (CT, MR) and functional (PET) cerebral images.J Comput Assist Tomogr 13: 603–611, 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Talairach J, Toumroux P. Co-planar stereotaxic atlas of the human brain. New York: Thieme, 1988.

    Google Scholar 

  5. Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Comparing functional (PET) images: the assessment of significant change.J Cereb Blood Flow Metab 11: 690–699, 1991.

    PubMed  CAS  Google Scholar 

  6. Pappata S, Fiorelli M, Rommel T, Hartmann A, Dettmers C, Yamaguchi T, et al. PET study of changes in local brain hemodynamics and oxygen metabolism after unilateral middle cerebral artery occlusion in baboons.J Cereb Blood Flow Metab 13: 416–424, 1993.

    PubMed  CAS  Google Scholar 

  7. Heiss WD, Graf R, Wienhard K, Lottgen J, Saito R, Fujita T, et al. Dynamic penumbra demonstrated by sequential multitracer PET after middle cerebral artery occlusion in cats.J Cereb Blood Flow Metab 14: 892–902, 1994.

    PubMed  CAS  Google Scholar 

  8. Reinoso-Suârez F. Topographischer Hirnatlas der Katze fur experimental-physiologische Untersuchungen. Darmstadt: E Merck AG, 1961.

    Google Scholar 

  9. Watanabe M, Uchida H, Okada H, Shimizu K, Satoh N, Yoshikawa E, et al. A high resolution PET for animal studies.IEEE Trans Med Imag 11: 577–580, 1992.

    Article  CAS  Google Scholar 

  10. Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. Error analysis of a quantitative cerebral blood flow measurement using H2(15)O autoradiography and positron emission tomography, with respect to the dispersion of the input function.J Cereb Blood Flow Metab 6: 536–545, 1986.

    PubMed  CAS  Google Scholar 

  11. Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis.J Nucl Med 24: 782–789, 1983.

    PubMed  CAS  Google Scholar 

  12. Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation.J Nucl Med 24: 790–798, 1983.

    PubMed  CAS  Google Scholar 

  13. Herscovitch P, Raichle ME. What is the correct value for the brain—blood partition coefficient for water?J Cereb Blood Flow Metab 5: 65–69, 1985.

    PubMed  CAS  Google Scholar 

  14. Senda M, Kanno I, Yonekura Y, Fujita H, Ishii K, Lyshkow H, et al. Comparison of anatomical standardization methods regarding the sensorimotor foci localization and betweensubject variation in H2(15)O PET activation, a three-center collaboration study.Ann Nucl Med 8: 201–207, 1994.

    Article  PubMed  CAS  Google Scholar 

  15. Klüver H, Barrera E. A method for the combined staining of cells and fibers in the nervous system.J Neuropath Exp Neurol 12: 40, 1953.

    Article  Google Scholar 

  16. Ogawa M, Magata Y, Ouchi Y, Fukuyama H, Yamauchi H, Kimura J, et al. Scopolamine abolishes cerebral blood flow response to somatosensory stimulation in anesthetized cats: PET study.Brain Res 650: 249–252, 1994.

    Article  PubMed  CAS  Google Scholar 

  17. Iwamura Y, Tanaka M. Functional organization of receptive fields in the cat somatosensory cortex. I: Integration within the coronal region.Brain Res 151: 49–60, 1978.

    Article  PubMed  CAS  Google Scholar 

  18. Matsumoto N, Sato T, Yahata F, Suzuki TA. Physiological properties of tooth pulp-driven neurons in the first somatosensory cortex (SI) of the cat.Pain 31: 249–262, 1987.

    Article  PubMed  CAS  Google Scholar 

  19. Heiss WD, Graf R, Lottgen J, Ohta K, Fujita T, Wagner R, et al. Repeat positron emission tomographic studies in transient middle cerebral artery occlusion in cats: residual perfusion and efficacy of postischemic reperfusion.J Cereb Blood Flow Metab 17: 388–400, 1997.

    Article  PubMed  CAS  Google Scholar 

  20. Fox PT, Burton H, Raichle ME. Mapping human somatosensory cortex with positron emission tomography.J Neurosurg 67: 34–43, 1987.

    Article  PubMed  CAS  Google Scholar 

  21. Meyer E, Ferguson SS, Zatorre RJ, Alivisatos B. Marrett S, Evans AC, et al. Attention modulates somatosensory cerebral blood flow response to vibrotactile stimulation as measured by positron emission tomography.Ann Neurol 29: 440–443, 1991.

    Article  PubMed  CAS  Google Scholar 

  22. Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects.Proc Natl Acad Sci USA 83:1140–1144, 1986.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yojiro Sakiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakiyama, Y., Toyama, H., Oda, K. et al. A stereotaxic method of anatomical localization by means of H2 15O positron emission tomography applicable to the brain activation study in cats: Registration of images of cerebral blood flow to brain atlas. Ann Nucl Med 11, 315–319 (1997). https://doi.org/10.1007/BF03165299

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03165299

Key words

Navigation