Skip to main content
Log in

Analysis of scintigrams by singular value decomposition (SVD) technique

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

The singular value decomposition (SVD) method is presented as a potential tool for analyzing gamma camera images. Mathematically image analysis is a study of matrixes as the standard scintigram is a digitized matrix presentation of the recorded photon fluence from radioactivity of the object. Each matrix element (pixel) consists of a number, which equals the detected counts of the object position. The analysis of images can be reduced to the analysis of the singular values of the matrix decomposition. In the present study the clinical usefulness of SVD was tested by analyzing two different kinds of scintigrams: brain images by single photon emission tomography (SPET), and liver and spleen planar images. It is concluded that SVD can be applied to the analysis of gamma camera images, and that it provides an objective method for interpretation of clinically relevant information contained in the images. In image filtering, SVD provides results comparable to conventional filtering. In addition, the study of singular values can be used for semiquantitation of radionuclide images as exemplified by brain SPET studies and liver-spleen planar studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pratt WK.Digital Image Processing. New York: Wiley & Sons, pp. 376–382, 1991.

    Google Scholar 

  2. Gonzales RC, Wintz P.Digital Image Processing. Massachusetts: Addison-Wesley, pp. 61–135, 213–251, 1987.

    Google Scholar 

  3. Morf R, Roesel F, Schmidlin P. Pattern recognition in noisy pictures.Research report (RZ 778, 26491, 8/13/76) by IBM Research Division. Yorktown Heights, New York, pp. 1–17, 1976.

  4. Golub GH, van Loan CF.Matrix computations. Baltimore: The Johns Hopkins University Press, 1989.

    Google Scholar 

  5. Raff U, Stroud DN, Hendee WR. Improvement of lesion detection in scintigraphic images by SVD techniques for resolution recovery.IEEE Trans Med Imaging 5: 35–44, 1986.

    Article  PubMed  CAS  Google Scholar 

  6. di Paola R, Berche C, Bazin JP: Traitement digital des informations scintigraphiques.In Nuklearmedizin: Proceedings of 12th annual meeting of the Society of Nuclear Medicine-Europe, München, September 11.–14., 1974. Pabst HW et al. (ed.). Stuttgart: F.K. Schattauer Verlag GmbH, pp. 670–683, 1975.

    Google Scholar 

  7. Schmidlin P, Schlegel W, Rösel F. Qualitätskriterien der Faktoranalytischen Bildbearbeitung in der Szintigraphie.In Nuklearmedizin: Proceedings of 13th annual meeting of the Society of Nuclear Medicine-Europe, Copenhagen, September 10–13, 1975. Munkner T et al. (ed.). Stuttgart: F.K. Schattauer Verlag GmbH, pp. 80–93, 1977.

    Google Scholar 

  8. Savolainen S, Liewendahl K. Use of singular value decomposition for interpretation of gamma images.In Nuclear Medicine. Nuclear medicine in research and practice. Proceedings of European nuclear medicine congress 1991, Vienna, September 1.–5., 1991. Schmidt HAE and Höfer R (eds.). Schattauer Stuttgart-New York, XXXVIII-XLII, 1992.

    Google Scholar 

  9. Schmidlin P, Clonus J, Kubesch R, et al. Evaluation of dynamic studies by means of factor analysis.In Medical radionuclide imaging, Vienna: International Atomic Energy Agency (IAEA-SM-210/27), pp. 397–408, 1977.

    Google Scholar 

  10. Schmidlin P. Quantitative evaluation and imaging of functions using pattern recognition methods.Phys Med Biol 24: 385–395, 1979.

    Article  PubMed  CAS  Google Scholar 

  11. Barber DC. The use of principal components in the quantitative analysis of gamma camera dynamics studies.Phys Med Biol 25: 283–292, 1980.

    Article  PubMed  CAS  Google Scholar 

  12. Oppenheim BE, Appledorn CR. Functional renal imaging through factor analysis.J Nucl Med 22: 417–423, 1981.

    PubMed  CAS  Google Scholar 

  13. Cavailloles F, Bazin J-P, di Paola R. Factor analysis in gated cardiac studies.J Nucl Med 25: 1067–1079, 1984.

    PubMed  CAS  Google Scholar 

  14. Ito T, Maeda H, Takeda K, et al. Factor analysis of gated cardiac blood-pool data: application to patients with congenital heart disease.Nucl Med Commun 12: 865–873, 1991.

    Article  PubMed  CAS  Google Scholar 

  15. Launes J, Nikkinen P, Lindroth L, et al. Diagnosis of acute herpes simplex encephalitis by brain perfusion single photon emission computed tomography.Lancet 1: 1188–1191, 1988.

    Article  PubMed  CAS  Google Scholar 

  16. Savolainen S, Liewendahl K, Syrjälä MT, et al. Platelet splenic transit times in idiopathic thrombocytopenic purpura, Compartmental vs. non-compartmental model.Int J Hematol 55: 81–87, 1992.

    PubMed  CAS  Google Scholar 

  17. Belsley DA, Kuh E, Welsch RE.Regression diagnostics: Identifying influential data and source of collinearity. New York: Wiley & Sons, pp. 98–191, 1980.

    Google Scholar 

  18. Muzik O, Herzoc KJ, Langen E, et al.In vivo assay of bloodbrain-barrier function regarding glucose transport using11CMG and PET.In Positron emission tomography in clinical research and clinical diagnosis: tracer modelling and radioreceptors, Beckers et al. (ed.). London: Kluwer academic publisher, pp. 194–205, 1989.

    Google Scholar 

  19. Kahaner D, Moler C, Nash S.Numerical methods and software. New Jersey: Prentice-Hall International Editions, pp. 218–226, 1989.

    Google Scholar 

  20. Umeyama S. Least-squares estimation of transformation parameters between two point patterns.IEEE Trans Pattern Anal Machine Intell 4: 376–380, 1991.

    Article  Google Scholar 

  21. Smith MF, Floyd CE, Jaszczak RJ, et al. Reconstruction of SPECT images using generalized matrix inverses.IEEE Trans Med Imaging 11: 165–175, 1992.

    Article  PubMed  CAS  Google Scholar 

  22. Van Daele M, Joosten J, Devos P, et al. Background correction in factor analysis of dynamic scintigraphy studies: necessity and implementation.Phys Med Biol 35: 1477–1485, 1990.

    Article  PubMed  Google Scholar 

  23. Savolainen S. Spect versus planar scintigraphy for quantitation of splenic sequestration of111In-labelled platelets.Nucl Med Commun 13: 757–763, 1992.

    PubMed  CAS  Google Scholar 

  24. Chandler ST. A comparison of liver-spleen ratios and uptakes obtained using planar and tomographic techniques.Nucl Med Commun 10: 297–307, 1989.

    Article  PubMed  CAS  Google Scholar 

  25. Reenen van, Lötter MG, Heyns A duP, et al. Quantification of the distribution of111In-labelled platelets in organs.Eur J Nucl Med 7: 80–84, 1982.

    Article  PubMed  Google Scholar 

  26. Rensburg van AJ, Lotter MG, Heyns A duP, et al. An evaluation of four methods of111In planar image qualification.Med Phys 15: 853–861, 1988.

    Article  PubMed  Google Scholar 

  27. Dongarra JJ, Moler CB, Bunch JR, et al.Unpack users’ guide. Philadelphia: SIAM, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savolainen, S.E., Liewendahl, B.K. Analysis of scintigrams by singular value decomposition (SVD) technique. Ann Nucl Med 8, 101–108 (1994). https://doi.org/10.1007/BF03165014

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03165014

Key words

Navigation