Skip to main content
Log in

Cardiac PET: Microcirculation and substrate transport in normal and diseased human myocardium

  • Review
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

The development and validation of quantitative assay techniques for the noninvasive study of human myocardium has opened up new avenues for the study of the normal and diseased human heart’s physiology. Measurements of regional myocardial blood flow, which delineates nutrient rather than coronary blood flow, has enabled the exploration of the coronary microcirculatory physiology under normal and abnormal conditions. It permits the study of pharmacologic effects and of cardiovascular disease on the coronary resistance and capillary perfusion. If combined with metabolic assay techniques, the transcapillary exchange of substrates in oxygen can be quantified and changes imposed by physiologic interventions and substrate metabolism being measured. These study approaches further serve to characterize changes in response to reductions in coronary blood flow as well as altered states of potentially reversible contractile function. It is anticipated that further studies with PET will clarify at the microcirculatory level the changes associated with ischemia, post-ischemic stunning and myocardial hibernation. Further, it offers the possibility to measure potentially beneficial effects of therapeutic interventions or, alternatively, to provide a rationale for novel therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuhle W, Porenta G, Huang S-C, Phelps M, Schelbert H. Issues in the Quantitation of Reoriented Cardiac PET Images.J Nucl Med 33: 1235–1242, 1992.

    PubMed  CAS  Google Scholar 

  2. Kuhle W, Porenta G, Huang S-C, Buxton D, Gambhir S, Hansen H, et al. Quantification of regional myocardial blood flow using13N-ammonia and reoriented dynamic positron emission tomographic imaging.Circulation 86: 1004–1017, 1992.

    PubMed  CAS  Google Scholar 

  3. Porenta G, Kuhle W, Czernin J, Ratib O, Brunken R, Phelps M, et al. Semiquantitative assessment of myocardial viability and perfusion utilizing polar map displays of cardiac PET images.J Nucl Med 33: 1623–1631, 1992.

    Google Scholar 

  4. Choi Y, Hawkins R, Huang S, Gambhir S, Brunken R, Phelps M, et al. Parametric Images of Myocardial Metabolic Rate of Glucose Generated from Dynamic Cardiac PET and 2-[18F]Fluoro-2-deoxy-d-glucose Studies.J Nucl Med 32: 733–738, 1991.

    PubMed  CAS  Google Scholar 

  5. Gambhir SS, Schwaiger M, Huang SC, Krivokapich J, Schelbert HR, Nienaber CA, et al. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and Fluorine-18 deoxyglucose.J Nucl Med 30: 359–366, 1989.

    PubMed  CAS  Google Scholar 

  6. Choi Y, Huang S, Hawkins R, Hoh C, Krivokapich J, Buxton D, et al. A refined method for quantification of myocardial oxygen consumption rate using mean transit time with Carbon-11 -acetate and dynamic PET.J Nucl Med 34: 2038–2043, 1993.

    PubMed  CAS  Google Scholar 

  7. Schelbert HR, Phelps ME, Hoffman EJ, Huang SC, Selin CE, Kuhl DE. Regional myocardial perfusion assessed with N-13 labeled ammonia and positron emission computerized axialtomography. Am J Cardiol 43: 209–218, 1979.

    Article  PubMed  CAS  Google Scholar 

  8. Schelbert HR, Phelps ME, Huang SC, MacDonald NS, Hansen H, Selin C, et al. N-13 ammonia as an indicator of myocardial blood flow.Circulation 63: 1259–1272, 1981.

    PubMed  CAS  Google Scholar 

  9. Nitzsche E, Choi Y, Czernin J, Hoh C, Huang S-C, Schelbert H. Comparison of O-15 water and N-13 ammonia PET measurements of myocardial blood flow in humans.Circulation 88: I-274, 1993.

    Google Scholar 

  10. Chan S, Brunken R, Czernin J, Porenta G, Kuhle W, Krivokapich J, et al. Comparison of maximal myocardial blood flow during adenosine infusion with that of intravenous dipyridamole in normal men.J Am Coll Cardiol 20: 979–985, 1992.

    Article  PubMed  CAS  Google Scholar 

  11. Czernin J, Müller P, Chan S, Brunken R, Porenta G, Krivokapich J, et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve.Circulation 88: 62–69, 1993.

    PubMed  CAS  Google Scholar 

  12. Holmberg S, Serzysko W, Varnauskas E. Coronary circulation during heavy exercise in control subjects and patients with coronary heart disease.Acta Med Scand 190: 465–480, 1971.

    PubMed  CAS  Google Scholar 

  13. Marcus M, Scheiben H, Skorton D, Wolf GL. Cardiac Imaging, Philadelphia: W.B. Saunders Company, 1991.

    Google Scholar 

  14. Müller P, Czernin J, Choi Y, Aguilar F, Nitzsche E, Buxton D, et al. Effect of exercise supplementation during adenosine infusion on hyperemic blood flow and flow reserve.Am Heart J, 1993 (in press).

  15. Camici P, Chiriatti G, Oorenzoni R, Bellina R, Gistri R, Italiani G, et al. Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: A study with nitrogen-13 ammonia and positron emission tomography.J Am Coll Cardiol 17: 879–886, 1991.

    PubMed  CAS  Google Scholar 

  16. Nienaber C, Gambhir S, Vaghaiwalla Mody F, Ratib O, Huang S-C, Phelps M, et al. Regional myocardial blood flow and glucose utilization in symptomatic patients with hypertrophic cardiomyopathy.Circulation 87: 1580–1590, 1993.

    PubMed  CAS  Google Scholar 

  17. Czernin J, Barnard J, Sun K, Krivokapich J, Brunken R, Porenta G, et al. Beneficial effect of cardiovascular conditioning on myocardial blood flow and coronary vasodilator capacity.Circulation 88: I-51, 1993.

    Google Scholar 

  18. Tomanek R J. Effects of age and exercise on the extent of the myocardial capillary bed.Anat Rec 167: 55–62, 1969.

    Article  Google Scholar 

  19. Haskell W, Sims C, Myll J, Bortz W, St. Goar F, Alderman E. Coronary artery size and dilating capacity in ultradistance runners.Circulation 87: 1076–1082, 1993.

    PubMed  CAS  Google Scholar 

  20. Drexler H, Zeiher A, Wollschläger, Meinertz T, Just H, Bonzel T. Flow-dependent coronary artery dilatation in humans.Circulation 80: 466–474, 1989.

    PubMed  CAS  Google Scholar 

  21. Flavahan N. Atherosclerosis or lipoprotein-induced endothelial dysfunction.Circulation 85: 1927–1938, 1992.

    PubMed  CAS  Google Scholar 

  22. Chan S, Kobashigawa J, Stevenson L, Brownfield E, Brunken R, Laks H, et al. Basal myocardial blood flow is increased but maximal flow is decreased during acute cardiac transplant rejection: A non-invasive quantitative study.J Am Coll Cardiol 17: 58A, 1991.

    Google Scholar 

  23. Bing RJ. The metabolism of the heart.Harvey Lecture Series. Academic Press, pp. 27–70, 1954.

  24. Hoffman EJ, Phelps ME, Weiss ES, Welch MJ, Coleman RE, Sobel BE, et al. Transaxial tomographic imaging of canine myocardium with11C-palmitic acid.J Nucl Med 18: 57–61, 1977.

    PubMed  CAS  Google Scholar 

  25. Klein MS, Goldstein RA, Welch MJ, Sobel BE. External assessment of myocardial metabolism with11C-palmitate in rabbit hearts.Am J Physiol 237: H51-H58, 1979.

    PubMed  CAS  Google Scholar 

  26. Choi Y, Brunken R, Hawkins R, Huang S-C, Buxton D, Hoh C, et al. Factors affecting myocardial 2-[F-18]fluoro-2-deoxy-D-glucose uptake in positron emission tomography studies of normal humans.Eur J Nucl Med 20: 308–318, 1993.

    Article  PubMed  CAS  Google Scholar 

  27. Merhige ME, Ekas R, Mossberg K, Taegtmeyer H, Gould KL. Catecholamine stimulation, substrate competition, and myocardial glucose uptake in conscious dogs assessed with positron emission tomography.Circ Res 61: II-124–II-129, 1987.

    CAS  Google Scholar 

  28. Chan A, Czernin J, Brunken R, Choi Y, Krivokapich J, Schelbert HR. Effects of Fasting on the Incidence of Blood Flow Metabolism Mismatches in Chronic CAD Patients.J Am Coll Cardiol 21: 129A, 1993.

    Google Scholar 

  29. Bol A, Melin J, Essamri B, Vogelaers D, Iida H, Vanbutsele R, et al. Assessment of Myocardial Oxidative Reserve with PET: Comparison with Fick Oxygen Consumption.Circulation 84: II-425, 1991.

    Google Scholar 

  30. Agostini D, Iida H, Takahashi A, Tamura Y, Ono Y. Assessment of myocardial perfusion and oxidative metabolism using 15O and Positron Emission Tomography in cardiomyopathy.J Am Coll Cardiol, 1994 (in press).

  31. Buxton DB, Nienaber CA, Luxen A, Ratib O, Hansen H, Phelps ME, et al. Noninvasive quantitation of regional myocardial oxygen consumptionin vivo with [1-11C] acetate and dynamic positron emission tomography.Circulation 79: 134–142, 1989.

    PubMed  CAS  Google Scholar 

  32. Armbrecht JJ, Buxton DB, Brunken RC, Phelps ME, Schelbert HR. Regional myocardial oxygen consumption determined noninvasively in humans with [1-11C] acetate and dynamic positron tomography.Circulation 80: 863–872, 1989.

    PubMed  CAS  Google Scholar 

  33. Krivokapich J, Huang S-C, Schelbert H. Assessment of the effects of dobutamine on myocardial blood flow and oxidative metabolism in normal human subjects using nitrogen-13 ammonia and carbon-11 acetate.Am J Cardiol 71: 1351–1356, 1993.

    Article  PubMed  CAS  Google Scholar 

  34. Czernin J, Porenta G, Brunken R, Krivokapich J, Chen K, Bennett R, et al. Regional blood flow, oxidative metabolism, and glucose utilization in patients with recent myocardial infarction.Circulation 88: 884–895, 1993.

    PubMed  CAS  Google Scholar 

  35. Feigl E, Neat G, Huang A. Interrelations between Coronary Artery Pressure, Myocardial Metabolism and Coronary Blood Flow.J Mol Cell Cardiol 22: 375–390, 1990.

    Article  PubMed  CAS  Google Scholar 

  36. Czernin J, Porenta G, Rosenquist G, Kuhle W, De Groof M, Krivokapich J, et al. Loss of Coronary Perfusion Reserve in PET Ischemia.Circulation 84: II-47, 1991.

    Google Scholar 

  37. Sun K, Czernin J, Krivokapich J, Duong T, Fung C, Lau Y-K, et al. Effects of dobutamine stimulation on myocardial blood flow, glucose metabolism and wall motion in PET mismatch regions.J Am Coll Cardiol, 1994 (in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Operated for the U.S. Department of Energy by the University of California under Contract #DE-AC03-76-5F00012. This work was supported in part by the Director of the Office of Energy Research, Office of Health and Environmental Research, Washington D.C., by Research Grants #HL 29845 and #HL 33177, National Institutes of Health, Bethesda, MD and by an Investigative Group Award by the Greater Los Angeles Affiliate of the American Heart Association, Los Angeles, CA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schelbert, H.R. Cardiac PET: Microcirculation and substrate transport in normal and diseased human myocardium. Ann Nucl Med 8, 91–100 (1994). https://doi.org/10.1007/BF03165013

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03165013

Key words

Navigation