Skip to main content
Log in

Changes in CA125 release and surface expression caused by drugs in uterine cervix adenocarcinoma cells

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

The effect of drugs on the release of CA125 antigen and the binding of anti-CA125 mono-clonal antibody (MoAb) to malignant cells was evaluatedin vitro. TMCC-1, uterine cervical adenocarcinoma cells, were exposed to dexamethasone (DEX), sodiumn-butyrate (NaB), dibutyryl cyclic AMP (dbcAMP), retinoic acid (RA), calcitriol (VD3), and interferon-γ (IFN-γ). NaB, RA and VD3 increased CA125 release per cell and125I-labeled anti-CA125 MoAb binding to the cells. DEX also increased the125I-labeled anti-CA125 MoAb binding to the cells, and CA125 antigen release per cell was also slightly increased. IFN-γ suppressed both CA125 release and125I-labeled MoAb binding. A combination of DEX, VD3 and RA and increased the binding of MoAb to TMCC-1 cells, but the amount of bound MoAb was not significantly different from that obtained by single drug treatment. DbcAMP had no significant effect on enhancing MoAb binding. Drugs can increase the binding of anti-CA125 MoAb to malignant cells and they may be applied to increase the tumor uptake of radiolabeled MoAbsin vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sands H: Experimental studies of radioimmuno-detection of cancer: An overview.Cancer Res 50 (Suppl): 809–813, 1990

    Google Scholar 

  2. Larson SM: Clinical radioimmunodetection, 1978–1988: overview and suggestions for standardization of clinical trials.Cancer Res 50 (Suppl): 892–898, 1990

    Google Scholar 

  3. Schlom J, Hand PH, Greiner JW, et al: Innovations that influence the pharmacology of monoclonal antibody guided tumor targeting.Cancer Res 50 (Suppl): 820–827, 1990

    Google Scholar 

  4. Nakai T, Endo K, Hosono M, et al: Drug effects on CA125 antigen expression and antibody binding to cancer cells.Int J Cancer 48: 463–467, 1991

    Article  PubMed  CAS  Google Scholar 

  5. Sakamoto M, Okabe K, Negishi Y, et al: Cytobiological and immunological characterization of a newly established cell line (TMCC-1) derived from human uterine cervical adenocarcinoma.J Tokyo Med College 46: 925–936, 1988

    Google Scholar 

  6. Matsuoka Y, Nakashima T, Endo K, et al: Recognition of ovarian cancer antigen CA 125 by murine monoclonal antibody produced by immunization of lung cancer cells.Cancer Res 47: 6335–6340, 1987

    PubMed  CAS  Google Scholar 

  7. Saga T, Endo K, Nakashima T, et al: Construction of an immunoradiometric assay for ovarian cancer associated antigen CA125 recognizing different antigenic determinant.Acta Obstet Gynecol Scand 69: 175–181, 1990

    Article  PubMed  CAS  Google Scholar 

  8. Endo K, Matsuoka Y, Nakashima T, et al: Development of a new sensitive immunoradiometric assay for CM125: Mixed use of two monoclonal antibodies reactive with separate epitopes.J Tumor Marker Oncol 3: 65–71, 1988

    CAS  Google Scholar 

  9. Scatchard G: The attraction of proteins for small molecules and ions.Ann NY, Acad Sci 51: 660–672, 1949

    Article  CAS  Google Scholar 

  10. Chatal JF, Saccavini J, Gestin J, et al: Biodistribution of indium-111-labeled OC125 monoclonal antibody intraperitoneally injected into patients operated on for ovarian carcinomas.Cancer Res 49: 3087–3094, 1989

    PubMed  CAS  Google Scholar 

  11. Hnatowich DJ, Chinol M, Siebecker DA, et al: Patient biodistribution of intraperitoneally administered Yttrium-90-labeled antibody.J Nucl Med 29: 1428–1434, 1988

    PubMed  CAS  Google Scholar 

  12. Haisma HJ, Moseley KR, Battaile AI, et al: Biodistribution, pharmacokinetics and imaging of131I-labelled OC125 in ovarian cancer.Int J Cancer (Suppl): 2: 109–113, 1988

    Article  CAS  Google Scholar 

  13. Colcher D, Keenan AM, Larson SM, et al: Prolonged binding of a radiolabeled monoclonal antibody (B72.3) used for thein situ radioimmunodetection of human colon carcinoma xenografts.Cancer Res 44: 5744–5751, 1984

    PubMed  CAS  Google Scholar 

  14. Sakahara H, Endo K, Nakashima T, et al: Localization of human osteogenic sarcoma xenografts in nude mice by a monoclonal antibody labeled with radioiodine and indium-111.J Nucl Med 28: 342–348, 1987

    PubMed  CAS  Google Scholar 

  15. Sakahara H, Endo K, Koizumi M, et al: Relationship betweenin vitro binding activity andin vivo tumor accumulation of radiolabeled monoclonal antibodies.J Nucl Med 29: 235–240, 1988

    PubMed  CAS  Google Scholar 

  16. Hand PH, Nuti M, Colcher DL, et al: Definition of antigenic heterogeneity and modulation among human mammary carcinoma cell populations using monoclonal antibodies to tumor-associated antigens.Cancer Res 43: 728–735, 1983

    PubMed  CAS  Google Scholar 

  17. Fargion S, Carney D, Mulshine J, et al: Heterogeneity of cell surface antigen expressin of human small cell lung cancer detected by monoclonal antibodies.Cancer Res 46: 2633–2638, 1986

    PubMed  CAS  Google Scholar 

  18. Karlan BY, Amin W, Casper SE, et al: Hormonal regulation of CM125 tumor marker expression in human ovarian carcinoma cells: Inhibition by glucocorticoids.Cancer Res 48: 3502–3506, 1988

    PubMed  CAS  Google Scholar 

  19. Cook JR, Schwartz CE, Fausel ED, et al: Effect of sodium butyrate on α-fetoprotein gene expression in rat hepatoma cellsin vitro.Cancer Res 45: 3215–3219, 1985

    PubMed  CAS  Google Scholar 

  20. Langdon SP, Hawkes MM, Hay FG, et al: Effect of sodium butyrate and other differentiation inducers on poorly differentiated human ovarian adenocarcinoma cell lines.Cancer Res 48: 6161–6165, 1988

    PubMed  CAS  Google Scholar 

  21. Ishiwata, I, Ishiwata C, Nozawa S, et al: Cal25 production by gynecologic tumorsin vitro and its modulation induced by dibutyl cyclic adenosine monophosphate.Asia Oceania J Obstet Gynaecol 12: 285–290, 1986

    PubMed  CAS  Google Scholar 

  22. Rowlinson G, Balkwill F, Snook D, et al: Enhancement by γ-interferon ofin vivo tumor radiolocalization by a monoclonal antibody against HLA-DR antigen.Cancer Res 46: 6413–6417, 1986

    PubMed  CAS  Google Scholar 

  23. Greiner JW, Guadagni F, Noguchi P, et al: Recombinant interferon enhances monoclonal antibody-targeting of carcinoma lesionsin vivo.Science 235: 895–898, 1987

    Article  PubMed  CAS  Google Scholar 

  24. Marth C, Fuith LC, Bock G, et al: Modulation of ovarian carcinoma tumor marker CM125 by γ-interferon.Cancer Res 49: 6538–6542, 1989

    PubMed  CAS  Google Scholar 

  25. Wosenblum MG, Lamki LM, Murray JL, et al: Interferon-induced changes in pharmacokinetics and tumor uptake of111In-]abeled antimelanoma anti-body 96.5 in melanoma patients.J Natl Cancer Inst 80: 160–165, 1988

    Article  Google Scholar 

  26. Masuho Y, Zalutsky M, Knapp RC, et al: Interaction of monoclonal antibodies with cell surface antigens of human ovarian carcinomas.Cancer Res 44: 2813–2819, 1984

    PubMed  CAS  Google Scholar 

  27. Lotan R, Francis GE, Freeman CS, et al: Differentiation therapy.Cancer Res 50: 3435–3464, 1990

    Google Scholar 

  28. Doyle LA, Giangiulo D, Hussain A, et al: Differentiation of human variant small cell lung cancer cell lines to a classic morphology by retinoic acid.Cancer Res 49: 6745–6751, 1989

    PubMed  CAS  Google Scholar 

  29. Yung, WKA, Lotan R, Lee P, et al: Modulation of growth and epidermal growth factor receptor activity by retinoic acid in human glioma cells.Cancer Res 49: 1014–1019, 1989

    PubMed  CAS  Google Scholar 

  30. Kruh J: Effects of sodium butyrate, a new pharmacological agent, on cells in culture.Mol Cell Biochim 42: 65–82, 1982

    CAS  Google Scholar 

  31. Nagamine S, Yanagawa T, Bando T, et al: Induction of cells with phenotypic features of neuronal cells by treatment with dibutyryl cyclic adenosine 3′,5′-monophosphate in a human parotid gland adeno-carcinoma cell line in culture.Cancer Res 50: 6396–6404, 1990

    PubMed  CAS  Google Scholar 

  32. Laskin DL, Beavis AJ, Sirak AA, et al: Differentiation of U-937 histiocytic lymphoma cells towards mature neutrophilic granulocytes by dibutyryl cyclic adenosine-3′,5′-monophosphate.Cancer Res 50: 20–25, 1990

    PubMed  CAS  Google Scholar 

  33. Gresser I: Interferons and the immune system.Interferon 2: 132–113, 1984

    Google Scholar 

  34. Attallah AM, Needy CF, Noguchi PD, et al: Enhancement of carcinoembryonic antigen expression by interferon.Int J Cancer 24: 49–52, 1979

    Article  PubMed  CAS  Google Scholar 

  35. Greiner JW, Hand PH, Noguchi P, et al: Enhanced expression of surface tumor-associated antigens on human breast and colon tumor cells after recombinant human leukocyte α-interferon treatment.Cancer Res 44: 3208–3214, 1984

    PubMed  CAS  Google Scholar 

  36. Marth C, Muller-Holzner E, Greiter E, et al: γ interferon reduces expression of the protooncogene c-erbB-2 in human ovarian carcinoma cells.Cancer Res 50: 7037–7041, 1990

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakai, T., Sakahara, H., Endo, K. et al. Changes in CA125 release and surface expression caused by drugs in uterine cervix adenocarcinoma cells. Ann Nucl Med 7, 133–139 (1993). https://doi.org/10.1007/BF03164956

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03164956

Key words

Navigation