Skip to main content

Advertisement

Log in

Carbon-11 labeled ethionine and propionine as tumor detecting agents

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

To develop18F-fluoroalkyl derivatives of methionine (MET) as a tumor detecting agent by mean of clinical PET, a pilot study assessing the potential of their parent compounds,11C-labeled ethionine (11C-ETH) and propionine (11C-PRO), was performed.11C-ETH and11C-PRO were prepared by the reaction ofl-homocysteine thiolactone and corresponding11C-alkyl iodides. After i.v. injection of a mixture of3H-MET,14C-ETH and11C-PRO into mice bearing FM3A mammary carcinoma, the highest FM3A uptake was found in14C-ETH, followed by3H-MET and11C-PRO, while the FM3A-to-brain and FM3A-to-muscle ratios were nearly the same for all three compounds. The FM3A uptake of14C-ETH and11C-PRO were nearly equal or slightly higher than the liver uptake. In the pancreas, liver, FM3A and brain tissues, incorporation of14C-ETH into acid-precipitable materials was much lower than that of3H-MET, whereas no incorporation of11C-PRO was found. Brain uptake of all three compounds was significantly reduced by carrier MET-loading (5 min p.i.) or by cycloheximide treatment to inhibit protein synthesis (60 min p.i.), whereas the FM3A uptake was not affected. Incorporation of14C-ETH into acid-precipitable materials was inhibited by the cycloheximide. The results suggest that11C-labeled ETH has a similar potential for tumor detection by PET as11C-MET, and that11C-PRO has similar properties to those of other artificial amino acids. The development of18F-fluoroalkyl derivatives of MET is of interest as the next step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vaalburg W, Coenen HH, Crouzel C, Elsinga PH, Långström B, Lemaire C, et al. Amino acids for the measurement of protein synthesisin vivo by PET.Nucl Med Biol 19: 227–237, 1992.

    CAS  Google Scholar 

  2. Bustany P, Chatel M, Derlon JM, Darcel F, Sgouropoulos P, Soussaline F, et al. Brain tumor protein synthesis and histological grade: a study by positron emission tomography (PET) with C11-L-methionine.J Neuro-Oncol 3: 397–404, 1986.

    Article  CAS  Google Scholar 

  3. Schober O, Duden C, Meyer G-J, Müller JA, Hundeshagen H. Non selective transport of [11C-methyl]-L- and D-methionine into a malignant glioma.Eur J Nucl Med 13: 103–105, 1987.

    Article  PubMed  CAS  Google Scholar 

  4. Bergström M, Ericson K, Hagenfeldt L, Mosskin M, von Holst H, Norén G, et al. PET study of methionine accumulation in glioma and normal brain tissue: competition with branched chain amino acids.J Comput Assist Tomogr 11: 208–213, 1987.

    Article  PubMed  Google Scholar 

  5. Lilja A, Lundqvist H, Olsson Y, Spännare B, Gullberg P, Långström B. Positron emission tomography and computed tomography in differential diagnosis between recurrent or residual glioma and treatment-induced brain lesions.Acta Radiol 30: 121–128, 1989.

    Article  PubMed  CAS  Google Scholar 

  6. Hatazawa J, Ishiwata K, Itoh M, Kameyama M, Kubota K, Ido T, et al. Quantitative evaluation ofl-[methyl-C-11]methionine uptake in tumor using positron emission tomography.J Nucl Med 30: 1809–1813, 1989.

    PubMed  CAS  Google Scholar 

  7. O’Tuama L, Phillips PC, Smith QR, Uno Y, Dannais RF, Wilson AA, et al. L-Methionine uptake by human cerebral cortex: maturation from infancy to old age.J Nucl Med 32: 16–22, 1991.

    PubMed  Google Scholar 

  8. Daemen BJG, Zwertbroek R, Elsinga PH, Paans AMJ, Doorenbos H, Vaalburg W. PET studies withl-[1-11C]tyrosine,l-[methyl-11C]methionine and18F-fluorodeoxyglucose in prolactinomas in relation to bromocryptine treatment.Eur J Nucl Med 18: 453–460, 1991.

    Article  PubMed  CAS  Google Scholar 

  9. Leskinen-Kallio S, Någren K, Lehikoinen P, Routsalainen U, Teräs M, Joensuu H. Carbon-11-methionine and PET as an effective method to image head and neck cancer.J Nucl Med 33: 691–695, 1992.

    PubMed  CAS  Google Scholar 

  10. Ogawa T, Shishido F, Kanno I, Inugami A, Fujita H, Murakami M, et al. Cerebral glioma; evaluation with methionine PET.Radiology 186: 45–53, 1993.

    PubMed  CAS  Google Scholar 

  11. Kubota K, Yamada K, Fukuda H, Endo S, Ito M, Abe Y, et al. Tumor detection with carbon-11-labelled amino acids.Eur J Nucl Med 9: 136–140, 1984.

    Article  PubMed  CAS  Google Scholar 

  12. Ishiwata K, Kubota K, Murakami M, Kubota R, Senda M. A comparative study on protein incorporation ofl-[methyl3H]methionine,l-[1-14C]leucine andl-2-[18F]fluorotyrosine in tumor bearing mice.Nucl Med Biol 20: 895–899, 1993.

    Article  PubMed  CAS  Google Scholar 

  13. Ishiwata K, Kubota K, Murakami M, Kubota R, Sasaki T, Ishii S, et al. Re-evaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measuredin vivo?J Nucl Med 34: 1936–1943, 1993.

    PubMed  CAS  Google Scholar 

  14. Janzen AF, Wang PMC, Lemire AE. Fluorination of methionine and methionylglycine derivatives with xenon difluoride.J Fluorine Chem 22: 557–559, 1983.

    Article  CAS  Google Scholar 

  15. Alix J-H. Molecular aspects of thein vivo andin vitro effects of ethionine, an analog of methionine.Microbiol Rev 46: 281–295, 1982.

    PubMed  CAS  Google Scholar 

  16. Farber E. Ethionine carcinogenesis.Adv Cancer Res 7: 383–474, 1963.

    Article  PubMed  CAS  Google Scholar 

  17. Durand S, Benard P. Whole-body autoradiographic study of the distribution of radioactivity in rats givenl-[1,2-ethyl- 14C]ethionine.Toxicol Appl Pharmacol 53: 204–210, 1980.

    Article  PubMed  CAS  Google Scholar 

  18. Durand S, Lloveras J, Thouvenot JP, Douste-Blazy L. Comparative diffusion ofl-14C-ethionine and14C-methionine in rat tissue.C R Seances Soc Biol Fil 5169: 1622–1626, 1975. (in French)

    Google Scholar 

  19. Långström B, Antoni G, Gullberg P, Halldin C, Nägren K, Rimland A, et al. The synthesis ofl-11C-labelled ethyl, propyl, butyl and isobutyl iodides and examples of alkylation reactions.Appl Radiat Isot 37: 1141–1145, 1986.

    Article  Google Scholar 

  20. Kubota K, Ishiwata K, Tada M, Yamada S, Kubota R, Iwata R, et al. Investigation of metastatic potential withN- [18F]fluoroacetyl-d-glucosamine.Nucl Med Biol 19: 747–752, 1992.

    CAS  Google Scholar 

  21. Ishiwata K, Ido T, Vaalburg W. Increased amount ofdenantiomer dependent on alkaline concentration in the synthesis ofl-[methyl-11C]methionine.Appl Radiat Isot 39: 311–314, 1988.

    Article  CAS  Google Scholar 

  22. Ishiwata K, Ishii S, Senda M. HPLC separation using physiological saline for quality control of radiopharmaceuticals used in PET studies.Appl Radiat Isot 44: 1119–1124, 1993.

    Article  CAS  Google Scholar 

  23. Ishiwata K, Enomoto K, Sasaki T, Elsinga PH, Senda M, Okazumi S, et al. A feasibility study onl-[1-11C]tyrosine andl-[methyl-11C]methionine to assess liver protein synthesis by PET.J Nucl Med 37: 279–285, 1996.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiichi Ishiwata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishiwata, K., Kasahara, C., Hatano, K. et al. Carbon-11 labeled ethionine and propionine as tumor detecting agents. Ann Nucl Med 11, 115–122 (1997). https://doi.org/10.1007/BF03164819

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03164819

Key words

Navigation