Skip to main content
Log in

Use of automated image registration to generate mean brain SPECT image of Alzheimer’s patients

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

The purpose of this study was to compute and compare the group mean HMPAO brain SPECT images of patients with senile dementia of Alzheimer’s type (SDAT) and age matched control subjects after transformation of the individual images to a standard size and shape.Methods: Ten patients with Alzheimer’s disease (age 71.6 ± 5.0 yr) and ten age matched normal subjects (age 71.0 ± 6.1 yr) participated in this study. Tc-99m HMPAO brain SPECT and X-ray CT scans were acquired for each subject. SPECT images were normalized to an average activity of 100 counts/pixel. Individual brain images were transformed to a standard size and shape with the help of Automated Image Registration (AIR). Realigned brain SPECT images of both groups were used to generate mean and standard deviation images by arithmetic operations on voxel based numerical values. Mean images of both groups were compared by applying the unpaired t-test on a voxel by voxel basis to generate three dimensional T-maps. X-ray CT images of individual subjects were evaluated by means of a computer program for brain atrophy.Results: A significant decrease in relative radioisotope (RI) uptake was present in the bilateral superior and inferior parietal lobules (p < 0.05), bilateral inferior temporal gyri, and the bilateral superior and middle frontal gyri (p < 0.001). The mean brain atrophy indices for patients and normal subjects were 0.853 ± 0.042 and 0.933 ± 0.017 respectively, the difference being statistically significant (p < 0.001).Conclusion: The use of a brain image standardization procedure increases the accuracy of voxel based group comparisons. Thus, intersubject averaging enhances the capacity for detection of abnormalities in functional brain images by minimizing the influence of individual variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Legg NJ, Frackowiak RSJ. Positron emission tomography in dementia.Interdiscipl Topics Geront 20: 67–70, 1985.

    Google Scholar 

  2. Frackowiak RSJ, Pozzilli C, Legg NJ, et al. Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen 15 and positron tomography.Brain 104: 753–778, 1981.

    Article  PubMed  CAS  Google Scholar 

  3. Cohen MB, Graham LS, Lake R, et al. Diagnosis of Alzheimer’s disease and multiple infarct dementia by tomographic imaging of iodine 123-IMP.J Nucl Med 27: 769–774, 1986.

    PubMed  CAS  Google Scholar 

  4. Sharp P, Gemmell H, Cherryman G, Besson J, Crawford J, Smith F. Application of iodine 123-labeled IMP imaging to the study of dementia.J Nucl Med 27: 761–768, 1986.

    PubMed  CAS  Google Scholar 

  5. Smith FW, Besson JAO, Gemmell HG, Sharp PF. The use of technetium-99m HMPAO in the assessment of patients with dementia and other neuropsychiatric conditions.J Cereb Blood Flow Metab 8: S116-S122, 1988.

    PubMed  CAS  Google Scholar 

  6. Holman BL, Johnson KA, Gerada B, Carvalho PA, Satlin A. The scintigraphic appearance of Alzheimer’s disease: A prospective study using Tc-99m HMPAO SPECT.J Nucl Med 33: 181–185, 1992.

    PubMed  CAS  Google Scholar 

  7. Costa DC, Ell PJ, Burn A, Philpot M, Levy R. CBF tomograms with Tc-99m HMPAO in patients with dementia and Parkinson’s disease.J Cereb Blood Flow Metab 8: S109-S115, 1988.

    PubMed  CAS  Google Scholar 

  8. Neary D, Snowden JS, Northn B, Goulding P. Dementia of frontal lobe type.J Neurol Neurosurg Psychiatry 51: 353–361, 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Fox PT, Mintun MA, Reiman EM, Raichle ME. Enhanced detection of focal brain responses using intersubject averaging and change distribution analysis of subtracted PET images.J Cereb Blood Flow Metab 8: 642–653, 1988.

    PubMed  CAS  Google Scholar 

  10. McCready R, A’Hern R. A more rational basis for determining the activities used for radionuclide imaging?EurJ Nucl Med 24: 109–110, 1997.

    Article  CAS  Google Scholar 

  11. Eberl S, Kanno I, Fulton RR, Ryan A, Hutton BF, Fulham MJ. Automated interstudy image registration technique for SPECT and PET.J Nucl Med 37: 137–145, 1996.

    PubMed  CAS  Google Scholar 

  12. Koyama M, Kawashima R, Ito H, et al. Normal cerebral perfusion of Tc-99m HMPAO brain SPECT—Evaluation by an Anatomical Standardization Technique—.KAKU IGAKU (Jpn J Nucl Med) 32: 967–977, 1995.

    Google Scholar 

  13. Koyama M, Kawashima R, Ito H, Ono S, Sato K, Goto R, et al. SPECT images with Tc-99m HMPAO and Tc-99m ECD in normal subjects.J Nucl Med 38: 587–592, 1997.

    PubMed  CAS  Google Scholar 

  14. Ono S, Kawashima R, Ito H, Koyama M, Goto R, Inoue K, et al. Regional distribution of muscarinic cholinergic receptor in the human brain studied with C-11 Benztropine and PET using an anatomical standardization technique.KAKU IGAKU (Jpn J Nucl Med) 33: 721–727, 1996.

    CAS  Google Scholar 

  15. Ito H, Kawashima R, Awata S, et al. Hypoperfusion in the limbic system and prefrontal cortex in depression: SPECT with anatomic standardization technique.J Nucl Med 37: 410–414, 1996.

    PubMed  CAS  Google Scholar 

  16. Evans A, Beil C, Marret C, Thompson C, Hakim A. Anatomical functional correlation using an adjustable MRI based ROI atlas with positron emission tomography.J Cereb Blood Flow Metab 8: 513–530, 1988.

    PubMed  CAS  Google Scholar 

  17. Alpert N, Bradshaw J, Senda M, Correia J. The principal axis transformation: a method for image registration.J Nucl Med 30: 776, 1989.

    Google Scholar 

  18. Junck L, Moen JG, Hutchins GD, Brown MB, Kuhl DE. Correlation methods for centering, rotating, and alignment of functional brain images.J Nucl Med 31: 1220–1226, 1990.

    PubMed  CAS  Google Scholar 

  19. Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC. Automated image registration: I. General method and intrasubject, intramodality validation.J Comput Assist Tomogr 22: 141–154, 1998.

    Google Scholar 

  20. Woods RP, Grafton ST, Watson JDG, Sicotte, Mazziotta JC. Automated image registration: II. Intersubject validation of linear and nonlinear models.J Comput Assist Tomogr 22: 155–165, 1998.

    Google Scholar 

  21. Woods RP, Mazziotta JC, Cherry SR. Automated image registration. In:Quantificaiton of Brain Function. Tracer kinetics and image analysis in brain PET. Uemura K, et al., eds. Elsevier Science Publisher, pp. 391–398, 1993.

  22. Strother SC, Anderson JR, Xu SI, Liow JS, Bonar DC, Rottenberg DA. Quantitative comparisons of image registration techinques based on high resolution MRI of the brain.J Comput Assist Tomogr 18: 954–962, 1994.

    Article  PubMed  CAS  Google Scholar 

  23. Black KJ, Videen TO, Perlmutter JS. A metric for testing the accuracy of cross modality image registration: Validation and application.J Comput Assist Tomogr 20: 855–861, 1996.

    Article  PubMed  CAS  Google Scholar 

  24. Imran MB, Kawashima R, Sato K, Kinomura S, Inoue K, Ono S, et al. Evaluation of accuracy in inter subject transformation of brain SPECT images using automated image registration (AIR).Ann Nucl Med 10 (Suppl): S222, 1996. (abstract)

    Google Scholar 

  25. Kinomura S, Kawashima R, Sato K, Imran MB, Yoshioka S, Ono S. Intersubject transformation of Brain SPECT by automated image registration (AIR)—Effects of defects in the target image—.Ann Nucl Med 10 (Suppl): S222, 1996. (abstract)

    Google Scholar 

  26. Imran MB, Kawashima R, Sato K, Kinomura S, et al. Mean rCBF images of normal subjects using Tc-99m HMPAO by automated image registration (AIR).J Nucl Med 39: 203–207, 1998.

    PubMed  CAS  Google Scholar 

  27. Kimura K, Hashikawa K, Wtani H, et al. A new apparatus for brain imaging: four head rotating gamma single photon emission computed tomography.J Nucl Med 31: 603–609, 1990.

    PubMed  CAS  Google Scholar 

  28. Roland PE, Graufelds CJ, Wahlin J, et al. Human brain atlas: For high resolution functional and anatomical mapping.Hum Brain Mapp 1: 173–184, 1994.

    Article  Google Scholar 

  29. Takeda S, Matsuzawa T. Brain atrophy during aging: A quantitative study using computed tomography.J Am Geriatr Soc 32: 520, 1984.

    PubMed  CAS  Google Scholar 

  30. Chui HC. Dementia, a review emphasizing clinicopathological correlation and brain behavior relationships.Arch Neurol 46: 806–814, 1989.

    PubMed  CAS  Google Scholar 

  31. Haxby JV. Letter to the editor.J Cerebr Blood Flow Metab 6: 125–126, 1986.

    Google Scholar 

  32. Kobari M, Fukuuchi Y, Shinohara T, Obara K, Nogawa S. Levodopa induced local cerebral blood flow changes in Parkinson’s disease and related disorders.J Neurol Sci 128: 212–218, 1995.

    Article  PubMed  CAS  Google Scholar 

  33. Heiss WD, Hebold H, Klinkhammer P. Effect of piracetam on cerebral glucose metabolism in Alzheimer’s diesease as measured by positron emission tomography.J Cereb Blood Flow Metab 8: 613–617, 1988.

    PubMed  CAS  Google Scholar 

  34. Geaney DP, Soer N, Shepstone BJ, Cowen PJ. Effect of central cholinergic stimulation on regional cerebral blood flow in Alzheimer disease.Lancet 335: 1484–1487, 1990.

    Article  PubMed  CAS  Google Scholar 

  35. Harkins SW, Taylor JR, Mattay US. Response to tacrine in patients with dementia to Alzheimer’s type: cerebral perfusion change related to change in mental status.Int J Neurose 84: 149–156, 1996.

    Article  CAS  Google Scholar 

  36. Launes J, Sulkara R, Erkijuntti T, et al. Tc-99m HMPAO SPECT in suspected dementia.Nucl Med Commun 12: 757–765, 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imran, M.B., Kawashima, R., Awata, S. et al. Use of automated image registration to generate mean brain SPECT image of Alzheimer’s patients. Ann Nucl Med 12, 127–132 (1998). https://doi.org/10.1007/BF03164776

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03164776

Key words

Navigation