Skip to main content
Log in

Metabolic reserve in normal myocardium assessed by positron emission tomography with C-11 palmitate

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) with C-11 palmitate has been used in estimating the myocardial utilization of free fatty acid. To assess the metabolic reserve in normal subjects, a PET study was performed at control and during dobutamine infusion at 2 hour intervals in 5 normal subjects. Following monoexponential curve fitting of the time activity curve of the myocardium, the clearance half time (min) and residual fraction ( %) were calculated as indices of β-oxydation of free fatty acid. A significant increase in the heart rate and systolic blood pressure were observed during dobutamine infusion (65 ± 5 vs 100±29 bpm, p< 0.05 and 119±12 vs 144±16 mmHg, p< 0.01, respectively). The clearance half time and the residual fraction were significantly decreased (23.4±2.6 vs 15.8±2.3 min and 67.0±2.5vs 58.6± 4.0%, p< 0.05, each). When the left ventricular myocardium was divided into 4 segments, these indices were similar at control and uniformly decreased without regional differences during dobutamine infusion. These data suggest that β-oxydation of free fatty acid may be uniformly increased in the left ventricular myocardium in relation to the increase in cardiac work in normal subjects. PET with C-11 palmitate at control and during dobutamine infusion is considered to be promising in assessing metabolic reserve in the myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weiss ES, Hoffman EJ, Phelps ME, et al: External detection and visualization of myocardial ischemia with C-11 substratesin vivo andin vivo.Circ Res 39: 24–32, 1976

    PubMed  CAS  Google Scholar 

  2. Sobel BE, Weiss ES, Welch MJ, et al: Detection of remote myocardial infarction in patients with positron transaxial tomography and intravenous C-11 palmitate.Circulation 55: 853–857, 1977

    PubMed  CAS  Google Scholar 

  3. Ter-Pogossian MM, Klein MS, Markham J, et al: Regional assessment of myocardial infarction in patients with positron emision tomography with C-11 palmitate.Circulation 61: 242–255, 1980

    PubMed  CAS  Google Scholar 

  4. Bergmann SR, Lerch RA, Fox KAA et al: Temporal dependence of beneficial effects of coronary thrombolysis characterized by positron tomography.Am J Med 73: 753–581, 1982

    Article  Google Scholar 

  5. Geltman EM, Biello D, Welch MJ, et al: Characterization of nontransmural myocardial infarction by positron emission tomography.Circulation 65: 747–755, 1982

    PubMed  CAS  Google Scholar 

  6. Schon HR, Schelbert HR, Robinson G, et al: C-11 labeled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography. I. Kinetics of C-11 palmitic acid in normal myocardium.Am Heart J 103: 532–547, 1982

    Article  PubMed  CAS  Google Scholar 

  7. Schon HR, Schelbert HR, Nahaji A, et al: C-11 labeled palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography. II. Kinetics of C-11 palmitic acid in acutely ischemic myocardium.Am Heart J 103: 548–561, 1982

    Article  PubMed  CAS  Google Scholar 

  8. Schelbert HR, Henze E, Keen R, et al: C-11 palmitate for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography. IV.In vivo evaluation of acute demand-induced ischemia in dogs.Am Heart J 106: 736–750, 1983

    Article  PubMed  CAS  Google Scholar 

  9. Schelbert H, Henze E, Sochor H, et al: Effects of substrate availability on myocardial C-11 palmitate kinetics by positron emission tomography in normal subjects and patients with ventricular dysfunction.Am Heart J 111: 1055–1064, 1986

    Article  PubMed  CAS  Google Scholar 

  10. Grover-McKay M, Schelbert HR, Schwaiger M, et al: Identification of impaired metabolic reserve by atrial pacing in patients with significant coronary artery stenosis.Circulation 74: 281–292, 1986

    PubMed  CAS  Google Scholar 

  11. Senda M, Tamaki N, Yonekura Y, et al: Performance characteristics of Positologica III, a whole body positron emission tomograph.J Comput Assist Tomogr 9: 940–946, 1985

    Article  PubMed  CAS  Google Scholar 

  12. Yonekura Y, Tamaki N, Kambara H, et al: Detection of metabolic alterations in ischemic myocardium by F-18 fiuorodeoxyglucose uptake with positron emission tomography.J Am Cardiac Imag 2: 122–132, 1988

    Google Scholar 

  13. Stratmann HG, Kennedy H: Evaluation of coronary artery disease in the patients unable to exercise: alternatives to exercise stress testing.Am Heart J 117: 1344–1365, 1989

    Article  PubMed  CAS  Google Scholar 

  14. Mannering D, Cripps T, Leech G, et al: The dobutamine stress test as an alterative to exercise testing after acute myocardial infarction.Br Heart J 59: 521–526, 1988

    Article  PubMed  CAS  Google Scholar 

  15. Brown M, Marshall DR, Sobel BE, et al: Delineation of myocardial utilization with carbon-11-labeled acetate.Circulation 76: 687–696, 1987

    PubMed  CAS  Google Scholar 

  16. Brown MA, Myears DW, Bergmann SR: Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization.J Nucl Med 30: 187–193, 1989

    PubMed  CAS  Google Scholar 

  17. Buxton DB, Nienaber CA, Luxen A, et al: Non-invasive quantitation of regional myocardial oxygen consumptionin vivo with 1-11C acetate and dynamic positron emission tomography.Circulation 79: 134–142, 1989

    PubMed  CAS  Google Scholar 

  18. Tamaki N, Yonekura Y, Magata Y, et al: Fatty acid metabolism using C-11 palmitate: I. Resting study.Kaku Igaku 27: 313–321, 1990 (in Japanese)

    PubMed  CAS  Google Scholar 

  19. Tuttle RR, Millis J: Dobutamine. Development of new catecholamine to selectively increase cardiac contractility.Circ Res 36: 185–196, 1975

    PubMed  CAS  Google Scholar 

  20. Meyer SL, Curry GC, Donsky MS, et al: Influence of dobutamine on hemodynamics and coronary blood flow in patients with and without coronary artery disease.Am J Cardiol 38: 103–108, 1976

    Article  PubMed  CAS  Google Scholar 

  21. Mason JR, Palac RT, Freeman ML, et al: Thallium-201 scintigraphy during dobutamine infusion: non-exercise-dependent screening test for coronary disease.Am Heart J 107: 481–485, 1984

    Article  PubMed  CAS  Google Scholar 

  22. Berthe C, Pierard LA, Hiernaux M, et al: Predicting the extent and location of coronary artery disease in acute myocardial infarction by echocardiography during dubutamine infusion.Am J Cardiol 58: 1167–1172, 1986

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamaki, N., Kawamoto, M., Takahashi, N. et al. Metabolic reserve in normal myocardium assessed by positron emission tomography with C-11 palmitate. Ann Nucl Med 5, 53–58 (1991). https://doi.org/10.1007/BF03164614

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03164614

Key words

Navigation