Skip to main content
Log in

Plasmin-assistierte Vitrektomie — Stand der Forschung und klinische Evaluation

Microplasmin-assisted vitrectomy — Basic research and clinical studies

  • Originalarbeiten
  • Published:
Spektrum der Augenheilkunde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Microplasmin (Thrombo-Genics Ltd., Dublin, Irland) ist ein rekombinanter Wirkstoff, bestehend aus der katalytischen Domäne von humanem Plasmin. Wir untersuchten post mortem et in vivo, ob Microplasmin eine hintere Glaskörperabhebung induzieren kann, und ob mit morphologischen oder funktionellen Netzhautveränderungen zu rechnen ist.

Methode

In humanen Spenderaugen und in vivo bei Kaninchen, Minipig, Katze und Primaten wurde Microplasmin intravitreal appliziert und der Grad der vitreoretinalen Separation standardisiert mittels Rasterelektronenmikroskopie bestimmt. Zusätzlich wurden die Techniken der Transmissionselektronenmikroskopie, der konfokalen Mikroskopie und der Elektroretinographie (ERG) angewandt.

Resultate

Microplasmin kann post mortem et in vivo eine vollständige und dosisabhängige hintere Glaskörperabhebung induzieren. Morphologische oder immunzytochemische Netzhautveränderungen finden sich nicht. Dauerhafte ERG-Veränderungen sind nicht nachzuweisen.

Schlussfolgerung

Microplasmin trennt den Glaskörper von der Netzhaut ohne morphologische oder funktionelle Netzhautveränderungen zu induzieren. Mit diesen präklinischen Ergebnissen führen wir derzeit die ersten klinischen Studien zur Microplasmin-assistierten Vitrektomie durch.

Summary

Background

Microplasmin (ThromboGenics Ltd., Dublin, Ireland) is a recombinant molecule consisting of the catalytic domain of human plasmin. We investigated the cleaving effect of microplasmin at the vitreoretinal interface in post mortem eyes and in vivo.

Methods

Microplasmin was injected into the vitreous of post mortem eyes and in different animal models. The vitreoretinal interface was investigated by scanning and transmission electron microscopy and by laser scanning microscopy. In vivo, electroretinography was also performed.

Results

Microplasmin separates the vitreous from the retina in a dose-dependent fashion. The retinal architecture including the ultrastructure of the inner and outer retina is well preserved. There are no alterations of retinal morphology and immunocytochemistry between treated eyes and control eyes.

Conclusion

Microplasmin cleaves the vitreoretinal junction and helps to completely separate the vitreous from the retina. Several clinical trials are currently underway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Bhisitkul RB (2001) Anticipation for enzymatic vitreolysis. Br J Ophthalmol 85: 1–2

    Article  CAS  Google Scholar 

  2. Sebag J (1998) Pharmacologic vitreolysis. Retina 18: 1–3

    Article  CAS  Google Scholar 

  3. Nasrallah FP, Jalkh AE, Van Coppenolle F, Kado M, Trempe CL, McMeel JW, Schepens CL (1988) The role of the vitreous in diabetic macular edema. Ophthalmology 95: 1335–1339

    Article  CAS  Google Scholar 

  4. Hikichi T, Fujio N, Akiba J, Azuma Y, Takahashi M, Yoshida A (1997) Association between the short-term natural history of diabetic macular edema and the vitreomacular relationship in type II diabetes mellitus. Ophthalmology 104: 473–478

    Article  CAS  Google Scholar 

  5. Capeans C, Lorenzo J, Santos L, Suarez A, Copena MJ, Blanco MJ, Sanchez-Salorio M (1998) Comparative study of incomplete posterior vitreous detachment as a risk factor for proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 236: 481–5

    Article  CAS  Google Scholar 

  6. Bonnet M (1988) The development of severe proliferative vitreoretinopathy after retinal detachment surgery. Grade B: a determining risk factor. Graefes Arch Clin Exp Ophthalmol 226: 201–5

    Article  CAS  Google Scholar 

  7. Tolentino FI, Schepens CL, Freeman HM (1967) Massive preretinal retraction. A biomicroscopic study. Arch Ophthalmol 78: 16–22

    Article  CAS  Google Scholar 

  8. Sebag J (1996) Diabetic vitreopathy. Ophthalmology 103: 205–206

    Article  CAS  Google Scholar 

  9. Hageman GS, Russell SR (1994) Chondroitinase-mediated disinsertion of the primate vitreous body. Invest Ophthalmol Vis Sci 35: 1260

    Google Scholar 

  10. Hikichi T, Kado M, Yoshida A (2000) Intravitreal injection of hyaluronidase cannot induce posterior vitreous detachment in the rabbit. Retina 20: 195–8

    Article  CAS  Google Scholar 

  11. Sebag J (2002) Is pharmacologic vitreolysis brewing. Retina 22: 1–3

    Article  CAS  Google Scholar 

  12. Stenn KS, Link R, Moelmann G (1989) Dispase, a neutral protease from Bacillus polymyxa, is a powerful fibronectinase and type IV collagenase. J Invest Dermatol 93: 287–290.

    Article  CAS  Google Scholar 

  13. Tezel TH, Del Priore LV, Kaplan HJ (1998) Posterior vitreous detachment with dispase. Retina 18: 7–15

    Article  CAS  Google Scholar 

  14. Oliveira LB, Tatebayashi M, Mahmoud TH, Blackmon SM, Wong F, McCuen BW (2001) 2nd. Dispase facilitates posterior vitreous detachment during vitrectomy in young pigs. Retina 21: 324–31

    Article  CAS  Google Scholar 

  15. Jorge R, Oyamaguchi EK, Cardillo JA, Gobbi A, Laicine EM, Haddad A (2003) Intravitreal injection of dispase causes retinal hemorrhages in rabbit and human eyes. Curr Eye Res 26: 107–12

    Article  Google Scholar 

  16. Verstraeten TC, Chapman C, Hartzer M, Winkler BS, Trese MT, Williams GA (1993) Pharmacologic induction of posterior vitreous detachment in the rabbit. Arch Ophthalmol 111: 849–854

    Article  CAS  Google Scholar 

  17. Gandorfer A, Putz E, Welge-Lussen U, Gruterich M, Ulbig M, Kampik A (2001) Ultrastructure of the vitreoretinal interface following plasmin assisted vitrectomy. Br J Ophthalmol 85: 6–10

    Article  CAS  Google Scholar 

  18. Gandorfer A, Priglinger S, Schebitz K, Hoops J, Ulbig M, Ruckhofer J, Grabner G, Kampik A (2002) Vitreoretinal morphology of plasmin-treated human eyes. Am J Ophthalmol 133: 156–9

    Article  Google Scholar 

  19. Gandorfer A, Ulbig M, Kampik A (2002) Plasmin-assisted vitrectomy eliminates cortical vitreous remnants. Eye 16: 95–7

    Article  CAS  Google Scholar 

  20. Gandorfer A, Rohleder M, Sethi C, Eckle D, Welge-Lussen U, Kampik A, Luthert P, Charteris D (2004) Posterior vitreous detachment induced by microplasmin. Invest Ophthalmol Vis Sci 45: 641–7

    Article  Google Scholar 

  21. Gandorfer A, Rohleder M, Grosselfinger S, Haritoglou C, Ulbig M, Kampik A (2005) Epiretinal pathology of diffuse diabetic macular edema associated with vitreomacular traction. Am J Ophthalmol 139: 638–52

    Article  Google Scholar 

  22. Gandorfer A, Rohleder M, Kampik A (2002) Epiretinal pathology of vitreomacular traction syndrome. Br J Ophthalmol 86: 902–9

    Article  CAS  Google Scholar 

  23. Uemura A, Nakamura M, Kachi S, Nishizawa Y, Asami T, Miyake Y, Terasaki H (2005) Effect of plasmin on laminin and fibronectin during plasmin-assisted vitrectomy. Arch Ophthalmol 123: 209–13

    Article  CAS  Google Scholar 

  24. Kohno T, Sorgente N, Ishibashi T, Goodnight R, Ryan SJ (1987) Immunofluorescent studies of fibronectin and laminin in the human eye. Invest Ophthalmol Vis Sci 28: 506–514

    CAS  PubMed  Google Scholar 

  25. Yoshida A, Ishiguro S, Tamai M (1993) Expression of glial fibrillic acidic protein in rabbit müller cells after lensectomy-vitrectomy. Invest Ophthalmol Vis Sci 34: 3154–3160

    CAS  PubMed  Google Scholar 

  26. Ansari RR, Suh KI, Sebag J (2002) Dynamic light scattering (DLS) quantifies the effects of microplasmin pharmacologic vitreolysis. Poster at the 5th International Symposium on Ocular Pharmacology and Therapeutics (ISOPT). Monte Carlo, 2004

  27. Staubach F, Nober V, Janknecht P (2004) Enzyme-assisted vitrectomy in enucleated pig eyes: a comparison of hyaluronidase, chondroitinase, and plasmin. Curr Eye Res 29: 261–8

    Article  CAS  Google Scholar 

  28. Trese M (2002) Enzymatic-assisted vitrectomy. Eye 16: 365–368

    Article  CAS  Google Scholar 

  29. Trese MT, Williams GA, Hartzer MK (2000) A new approach to stage 3 macular holes. Ophthalmology 107: 1607–1611

    Article  CAS  Google Scholar 

  30. Williams JG, Trese MT, Williams GA, Hartzer MK (2001) Autologous plasmin enzyme in the surgical management of diabetic retinopathy. Ophthalmology 108: 1902–1905

    Article  CAS  Google Scholar 

  31. Margherio AR, Margherio RR, Hartzer M, Trese MT, Williams GA, Ferrone PJ (1998) Plasmin enzyme-assisted vitrectomy in traumatic pediatric macular holes. Ophthalmology 105: 1617–1620

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gandorfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandorfer, A., Kampik, A. Plasmin-assistierte Vitrektomie — Stand der Forschung und klinische Evaluation. Spektrum Augeheilkd 19, 221–224 (2005). https://doi.org/10.1007/BF03163401

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03163401

Schlüsselwörter

Key words

Navigation