Skip to main content
Log in

Interpretation of Mn2+ EPR spectra in disordered Materials

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

It is interesting to be able to estimate the values of the zero-field splitting parametersD andE appearing in the spin Hamiltonian of the Mn2+ ion in disordered materials, such as glass and polycrystalline samples. Since the electronic spin of the Mn2+ ion is 5/2 (>1/2), it is able to interact with the crystalline electric field of the environment to provide information on its surroundings. The present work attemps to interpret the intensities and positions of both the allowed and hyperfine forbidden EPR lines of the Mn2+ ion in disordered materials. First, a discussion is presented of the analytical expressions for the intensities and positions of the EPR lines in a monocrystal, which are then exploited by averaging to describe the expected behavior in disordered materials in order to estimate the values of the parametersD andE. The discussion is thereafter generalized to use computer simulations to generate Mn2+ EPR spectra in glassy and polycrystalline media. The effects of distribution ofD andE parameters and expected singularities in Mn2+ EPR spectra on the resulting EPR spectra in disordered materials are considered. Some published results are included to illustrate the application of the techniques described in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Misra S.K., Sun J.: Mag. Reson. Rev.16, 57 (1991)

    Google Scholar 

  2. Misra S.K.: Physica B.203, 193 (1994)

    Article  ADS  Google Scholar 

  3. Misra S.K., Mazur M., Pelikan P., Hulinova H., Liska M.: Physica B210, 55 (1995)

    Article  ADS  Google Scholar 

  4. Kliava J, Purans J.: J. Magn. Reson.40, 33 (1980)

    Google Scholar 

  5. Abragram A., Bleaney B.: Electron Paramagnetic Resonance of Transition Ions. Oxford 1970.

  6. Bleaney B., Rubins R.S.: Proc. Phys. Soc. (London)77, 33 (1961); corrigendum78, 778 (1961)

    Google Scholar 

  7. de Wijn H.W., Van Balderin R.F.: J. Chem. Phys.46, 1381 (1967)

    Article  ADS  Google Scholar 

  8. Bir G.L.: Sov. Phys. Solid State5, 1628 (1964)

    Google Scholar 

  9. Upreti G.C.: J. Magn. Reson..13, 336 (1974)

    Google Scholar 

  10. Misra S.K., Mbabie K., Subramanian S.: J. Phys. Chem. Solids50, 1157 (1989)

    Article  ADS  Google Scholar 

  11. Press W.H., Tenkolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes in Fortran: The Art of Scientific Computing (Second Edition). Cambridge 1992.

  12. Steudel A.: Hyperfine Interaction, p. 182. New York: Academic Press 1976.

    Google Scholar 

  13. Allen B.T.: J. Chem. Phys.43, 3820 (1965)

    Article  ADS  Google Scholar 

  14. Taylar P.C., Bray P.J.: J. Phys. Chem. Solids.33, 43 (1972)

    Article  ADS  Google Scholar 

  15. Kliava J.G., Purans J.: phys. stat. sol. (a)49, K43 (1978)

    Article  Google Scholar 

  16. Aasa R., Vanngard T.: J. Magn. Reson.19, 308 (1975)

    Google Scholar 

  17. Kneubuhl F.K.: J. Chem. Phys33, 1074 (1960)

    Article  ADS  Google Scholar 

  18. Griscom D.L., Griscom R.E.: J. Chem. Phys.47, 2711 (1967)

    Article  ADS  Google Scholar 

  19. Tucker R.F. in: Advances in Glass Technology, pp. 103–114. New York: Plenum 1962.

    Google Scholar 

  20. Taylar P.C., Bangher J.F., Kriz H.M.: Chem. Rev.75, 203 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, S.K. Interpretation of Mn2+ EPR spectra in disordered Materials. Appl. Magn. Reson. 10, 193–216 (1996). https://doi.org/10.1007/BF03163109

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03163109

Keywords

Navigation