Skip to main content
Log in

Approximation of weak stability constants of paramagnetic complexes by spin-lattice relaxation measurements of water protons

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The literature was briefly reviewed concernling the determination of stability constants of metal ions with various complexones using water proton relaxation methods. Experimentally, weak stability constants (K stab) of ethylenediaminetetraacetic acid (EDTA) and citric acid complexes with several transition and lanthanide ions were obtained at constant pHvia measurements of spin-lattice relaxation times (T 1) of water protons. The results were in general agreement with those determined earlier by various methods. In cases where more than one kind of complex was formed, the experimentalK stab reflected an average value of all species. Although this method is limited to measurements of weak complexes, it provides experimentally a simple approach with satisfactory results where neither great accuracy nor knowledge of equilibria and other parameters are required. It is believed that this method could be more widely applied for screening new contrast agents for MRI, and for exploration by MRI of weak low molecular weight complexes derived from biological sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bünzli J.-C.G., Choffrin G.R.: Lanthanide Probes in Life, Chemical and Earth Sciences. New York: Elsevier (1989), and references therein.

    Google Scholar 

  2. Evans C.H.: Biochemistry of the Elements (Frieden E., ed.) vol. 8. New York: Plenum Press 1990, and references therein.

    Google Scholar 

  3. Pettegrew J.W. (ed.): NMR: Principles and Applications to Biomedical Research. New York: Springer Verlag 1990, and references therein.

    Google Scholar 

  4. Lauffer R.B.: Chem. Rev87, 901–927 (1987), and reference therein.

    Article  Google Scholar 

  5. Sosnovsky G., Rao N.U.M.: Eur. J. Med. Chem.23, 517–522 (1988), and references therein.

    Article  Google Scholar 

  6. Sosnovsky G., Purgstaller K: Appl. Magn. Reson.2, 655–662 (1991)

    Article  Google Scholar 

  7. Sosnovsky G.: Appl. Magn. Reson.3, 131–149 (1992), and references therein.

    Google Scholar 

  8. Sosnovsky G., Rao N.U.M., Lukszo J., Brasch R.C.Z.: Naturforsch41b, 1170–1177 (1986)

    Google Scholar 

  9. Popel A.A.: Primenenie Yadernoi Magnitnoi Relaksatsii v Analize Neorganicheskikh Soedinenii (Use of Nuclear Magnetic Relaxation in the Analysis of Inorganic Compounds). Kazan: Izdatelstvo Kazanskogo Universiteta 1975, and references therein.

    Google Scholar 

  10. Popel, A.A.: Magnitno-Relaksatsionnyi Metod Analiza Neorganicheskikh Veshchestv (The Magnetic Relaxation Method for the Analysis of Inorganic Substances). Moscow: Izdatelstvo Khimiya 1978, and references therein.

    Google Scholar 

  11. Mildvan A.S., Cohn M.: Biochemistry2, 910–919 (1963)

    Article  Google Scholar 

  12. Mildvan A.S., Cohn N.M.: Adv. Enzymol33, 1–70 (1970), and references therein.

    Google Scholar 

  13. Dwek R.A., Williams R.J.P., Xavier A.V. in: Metal Ions in Biological Systems (Siegel H., ed.), vol. 4, ch. 3. New York: Dekker M. 1974, and references therein.

    Google Scholar 

  14. Mildvan A.S., Gupta, R.K.: Methods Enzymol.49G, 322–359 (1978), and references therein.

    Article  Google Scholar 

  15. Burton D.R., Forsen S., Karlstrom G. Dwek R.A.: Prog. Nucl. Magn. Reson. Spectrosc.13, 1–45 (1979), and references therein.

    Article  Google Scholar 

  16. Connors K.A.: Binding Constants — The Measurements of Molecular Complex Stablity, ch. 5. New York: John Wiley and Sons 1987, and references therein.

    Google Scholar 

  17. Yatsimirskii K.B.: Russ. J. Inorg. Chem.1, 2306–2309 (1956)

    Google Scholar 

  18. Cohn M., Townsend J. Nature173, 1090–1091 (1954)

    Article  ADS  Google Scholar 

  19. Farmer R.M., Popov A.I.: Inorg. Chim. Acta59, 87–91 (1982), and references therein.

    Article  Google Scholar 

  20. Popel A.A., Salnikov Yu.I. Kuzmina N.L., Shurygina I.I.: Russ. J. Inorg. Chem.22, 1284–1288 (1977)

    Google Scholar 

  21. Popel A.A., Salnikov Yu.I., Kuzmina N.L.: Russ. J. Inorg. Chem.23, 3035–3039 (1978)

    Google Scholar 

  22. Popel A.A., Glebov A.N., Salnikov Yu.I., Devyatov F.B.: Russ. J. Inorg. Chem.24, 2409–2414 (1979)

    Google Scholar 

  23. Salnikov Yu.I., Devyatov F.V., Davletbaeva I.M.: Russ. J. Inorg. Chem.24, 1838–1842 (1979), and references therein.

    Google Scholar 

  24. Salnikov Yu.I., Devyatov F.V.: Russ. J. Inorg. Chem.25, 2384–2388 (1980)

    Google Scholar 

  25. Salnikov Yu.I., Devyatov F.V.: Russ. J. Inorg. Chem.25, 1216–1222 (1980)

    Google Scholar 

  26. Boos G.A., Salnikov Yu.I., Chemkina O.Ya.: Russ. J. Inorg. Chem.27, 2026–2029 (1982)

    Google Scholar 

  27. Salnikov Yu.I., Devyatov F.V., Zhuravleva N.E., Golodnitskaya D.V.: Russ. J. Inorg. Chem.29, 2273–2276 (1984).

    Google Scholar 

  28. Salnikov Yu.I., Devyatov F.V., Amirov R.R.: Russ. J. Inorg. Chem.29, 65–68 (1983)

    Google Scholar 

  29. Salnikov Yu.I., Zhuravleva N.E.: Russ. J. Inorg. Chem.31, 1873–1875 (1986)

    Google Scholar 

  30. Shapnik M.S., Gilmanov A.N., Ermakova V.E., Muzeev I.Kh.: Russ. J. Inorg. Chem.20, 3117–3119 (1975)

    Google Scholar 

  31. Shapnik M.S., Gilmanov A.N., Petrova T.P., Gubaidullin F.F.: Russ. J. Inorg. Chem.20, 2148–2151 (1975)

    Google Scholar 

  32. Shapnik M.S., Gilmanov A.N., Petrova T.P., Gubaidullin F.F.: Russ. J. Inorg. Chem.22, 1289–1292 (1977)

    Google Scholar 

  33. Kostromina N.A., Novikova L.B.: Russ. J. Inorg. Chem.25, 2104–2108 (1980)

    Google Scholar 

  34. Kostromina N.A., Ternovaya T.V., Shevchenko Yu.B.: Russ. J. Inorg. Chem.25, 2959–2966 (1980)

    Google Scholar 

  35. Kostromina N.A., Odilavadze L.N., Kashiya L.D., Beloshitskii N.V.: Ukr. Khim. Zh.47, 134–137 (1981)

    Google Scholar 

  36. Kostromina N.A., Yakubov Kh.M., Shcherbakova V.E., Kudritskaya L.N.: Russ. J. Inorg. Chem.27, 1718–1724 (1982)

    Google Scholar 

  37. Kostromina N.A., Trunova E.K., Tananaeva N.N.: Teor. Eksper. Khim.23, 492–497 (1987)

    Google Scholar 

  38. Kostromina N.A.: Russ. J. Inorg. Chem.24, 3016–3022 (1979)

    Google Scholar 

  39. Navon G., Shulman R.G., Wyluda B.J., Yamane T.: Proc. Natl. Acad. Sci. U.S.60, 86–91 (1968)

    Article  ADS  Google Scholar 

  40. Rosenthal H.E.: Anal. Biochem.20, 525–532 (1967)

    Article  Google Scholar 

  41. Deranleau D.A.: J. Amer. Chem. Soc.91, 4044–4045 (1969)

    Article  Google Scholar 

  42. Deranleau D.A.: J. Amer. Chem. Soc.,91, 5050–5054 (1969)

    Google Scholar 

  43. Reed G.H., Cohn M., O’Sullivan W.J.: J. Biol. Chem.245, 6547–6552 (1970)

    Google Scholar 

  44. Burton D.R., Dwek R.A., Forsen S., Karlstrom G.: Biochemistry16, 250–254 (1977)

    Article  Google Scholar 

  45. Dwek R.A., Richards R.E., Morallee K.G., Nieboer E., Williams R.J.P., Xavier A.V.: Eur. J. Biochem.21, 204–209 (1971)

    Article  Google Scholar 

  46. Dower S.K., Dwek R.A., McLaughlin A.C., Mole L.E., Press E.M., Sunderland C.A.: Biochem. J.149, 73–82 (1975)

    Google Scholar 

  47. Mullen G.P., Serpersu E.H., Ferrin L.J., Loeb L.A., Mildvan A.S.: J. Biol. Chem.265, 14327–14334 (1990), and reference therein.

    Google Scholar 

  48. Jackson G.E.: Inorg. Chim. Acta107, 101–104 (1985)

    Article  Google Scholar 

  49. Kostromina N.A., Tananaeva N.A., Novikova L.B., Shevchenko Yu.B.: Teor. Eksper, Khim.15, 744–747 (1979)

    Google Scholar 

  50. Navon G.: Chem. Phys. Lett.7, 390–394 (1970)

    Article  ADS  Google Scholar 

  51. Eisinger J., Shulman R.G., Blumberg W.E.: Nature192, 963–964 (1961)

    Article  ADS  Google Scholar 

  52. Eisinger J., Shulman R.G., Szymanski B.M.: J. Chem. Phys.36, 1721–1729 (1962)

    Article  ADS  Google Scholar 

  53. Cohn M., Leigh J.S.: Nature193, 1037–1040 1962 (1962)

    Article  ADS  Google Scholar 

  54. Campi E., Ostacoli G., Meirone M., Saini G.: J. Inorg. Nucl. Chem.26, 553–564 (1964)

    Article  Google Scholar 

  55. Martell A.E., Smith K.M.: Critical Stability Constants, vols. 1–6. New York: Plenum Press 1974–1989, and references therein.

    Google Scholar 

  56. Hughes T.R., Klotz I.M.: Methods Biochem. Analy3, 265–297 (1956)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iacussi, M., Sosnovsky, G. Approximation of weak stability constants of paramagnetic complexes by spin-lattice relaxation measurements of water protons. Appl. Magn. Reson. 7, 507–520 (1994). https://doi.org/10.1007/BF03162573

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162573

Keywords

Navigation