Skip to main content
Log in

Zeeman splitting factor of the Er3+ ion in a crystal field

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Numerical computations are presented on the energy levels of the Er3+ ion in crystalline fields of cubic, trigonal, tetragonal and orthorhombic symmetry. Zeeman splitting factors were obtained from the level splitting in an additional magnetic field. For the quartet Γ8 states in cubic symmetry the Zeeman effect is described by an effective Hamiltonian ℋ= gμBBJ+BBJ3 with the parametersg andu calculated for mixed fourth- and sixth-order potentials. For the eight doublets in the lower symmetry of an axial trigonal or tetragonal crystal field the principalg tensor components g and g were calculated. The results of such calculations for a ground-state doublet can exactly account for the experimental data obtained on around 70 erbium centers in various crystalline hosts. However, sometimes different sets of parameters give comparably good results. An empirical rule of constant trace g + 2g is supported by the calculations. In contrast to analytical treatments the effect of the crystalline field can be followed over a continuous range of the crystal field parameters. This allows one to establish relations on the relative signs of tensor components. It is found that the measured trace of tensors |g| + 2|g| is not always equal to their real trace g + 2g. In an exploratory calculation a nonaxial center was simulated in an orthorhombic field, with calculation of the three principal values gx, gy and gz. A good agreement is obtained for the recently reportedg values of an erbium center in silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carey J.D., Barklie R.C., Donegan J.F., Priolo F., Franzò G., Coffa S.: Phys. Rev. B59, 2773–2782 (1999)

    Article  ADS  Google Scholar 

  2. Carey J.D., Priolo F.: Physica273-274, 350–353 (1999)

    Google Scholar 

  3. Elliott R.J., Stevens K.W.H.: Proc. R. Soc. Lond. A219, 387–404 (1953)

    Article  ADS  Google Scholar 

  4. Bowers K.D., Owen J.: Rep. Prog. Phys.18, 304–373 (1955)

    Article  ADS  Google Scholar 

  5. Hutchison C.A. Jr., Wong E.: J. Chem. Phys.29, 754–760 (1958)

    Article  ADS  Google Scholar 

  6. Baker J.M., Hayes W., Jones D.A.: Proc. Phys. Soc. Lond.73, 942–945 (1959)

    Article  Google Scholar 

  7. Orton J.W.: Rep. Prog. Phys.22, 204–240 (1959)

    Article  ADS  Google Scholar 

  8. Dvir M., Low W.: Proc. Phys. Soc. Lond.75, 136–138 (1960)

    Article  Google Scholar 

  9. Ball M., Garton G., Leask M.J.M., Ryan D., Wolf W.P.: J. Appl. Phys.32, 267S-269S (1961)

    Article  ADS  Google Scholar 

  10. Minis W.B., Nassau K., McGee J.D.: Phys. Rev.123, 2059–2069 (1961)

    Article  ADS  Google Scholar 

  11. Wolf W.P., Ball M., Hutchings M.T., Leask M.J.M., Wyatt A.F.G.: J. Phys. Soc. Jpn.17, Suppl. 2, 443–448 (1962)

    Google Scholar 

  12. Zverev G.M., Kornienko L.S., Prokhorov A.N., Smirnov A.I.: Sov. Phys. Solid State4, 284–286 (1962) [Fiz. Tverd. Tela4, 392–395 (1962)]

    Google Scholar 

  13. Low W., Rubins R.S.: Phys. Rev.131, 2527–2528 (1963)

    Article  ADS  Google Scholar 

  14. Ranon U., Low W.: Phys. Rev.132, 1609–1611 (1963)

    Article  ADS  Google Scholar 

  15. Descamps D., Merle d’Aubigne Y.: Phys. Lett.8, 5–7 (1964)

    Article  ADS  Google Scholar 

  16. Weber M.J., Bierig R.W.: Phys. Rev.134, A1492-A1503 (1964)

    Article  ADS  Google Scholar 

  17. Zverev G.M., Smirnov A.I.: Sov. Phys. Solid State6, 76–79 (1964) [Fiz. Tverd. Tela6, 96–100 (1964)]

    Google Scholar 

  18. Abraham M., Weeks R.A., Clark G.W., Finch C.B.: Phys. Rev.137, A138-A142 (1965)

    Article  ADS  Google Scholar 

  19. Antipin A.A., Katyshev A.N., Kurkin I.N., Shekun L.Ya.: Sov. Phys. Solid State7, 1148–1149 (1965) [Fiz. Tverd. Tela7, 1425–1427 (1965)]

    Google Scholar 

  20. Komet Y., Low W., Linares R.C.: Phys. Lett.19, 473–474 (1965)

    Article  ADS  Google Scholar 

  21. Kirton J.: Phys. Rev.139, A1930-A1933 (1965)

    Article  ADS  Google Scholar 

  22. Voron’ko Yu.K., Zverev G.M., Meshkov B.B., Smirnov A.I.: Sov. Phys. Solid State6, 2225–2232 (1965) [Fiz. Tverd. Tela6, 2799–2808 (1965)]

    Google Scholar 

  23. Larson G.H., Jeffries C.D.: Phys. Rev.141, 461–478 (1966)

    Article  ADS  Google Scholar 

  24. Mangum B.W., Hudson R.P.: J. Chem. Phys.44, 704–713 (1966)

    Article  ADS  Google Scholar 

  25. Rector C.W., Pandey B.C., Moos H.W.: J. Chem. Phys.45, 171–179 (1966)

    Article  ADS  Google Scholar 

  26. Watts R.K.: Solid State Commun.4, 549–552 (1966)

    Article  ADS  Google Scholar 

  27. Antipin A.A., Kurkin I.N., Livanova L.D., Potvorova L.Z., Shekun L.Ya.: Sov. Phys. Solid State8, 2130–2132 (1967) [Fiz. Tverd. Tela8, 2664–2667 (1966)]

    Google Scholar 

  28. Bobrovnikov Yu.A., Zverev G.M., Smirnov A.I.: Sov. Phys. Solid State8, 1750–1756 (1967) [Fiz. Tverd. Tela8, 2205–2212 (1966)]

    Google Scholar 

  29. Bobrovnikov Yu.A., Zverev G.M., Smirnov A.I.: Sov. Phys. Solid State9, 1403–1409 (1967) [Fiz. Tverd. Tela9, 1794–1801 (1967)]

    Google Scholar 

  30. Kingsley J.D., Aven M.: Phys. Rev.155, 235–246 (1967)

    Article  ADS  Google Scholar 

  31. Antipin A.A., Katyshev A.N., Kurkin I.N., Shekun L.Ya.: Sov. Phys. Solid State10, 468–474 (1968) [Fiz. Tverd. Tela10, 595–604 (1968)]

    Google Scholar 

  32. Mims W.B.: Phys. Rev.168, 370–389 (1968)

    Article  ADS  Google Scholar 

  33. Watts R.K., Holton W.C.: Phys. Rev.173, 417–426 (1968)

    Article  ADS  Google Scholar 

  34. Zverev G.M., Makarenko L.V., Smirnov A.I.: Sov. Phys. Solid State9, 2883–2884 (1968) [Fiz. Tverd. Tela9, 3651–3653 (1967)]

    Google Scholar 

  35. Brown M.R., Roots K.G., Williams J.M., Shand W.A., Groter C., Kay H.F.: J. Chem. Phys.50, 891–899 (1969)

    Article  ADS  Google Scholar 

  36. Crowder B.L., Title R.S., Petit G.D.: Phys. Rev.181, 567–573 (1969)

    Article  ADS  Google Scholar 

  37. Vasil’ev I.V., Zverev G.M., Makarenko L.V., Potkin L.I., Smirnov A.I.: Sov. Phys. Solid State11, 625–627 (1969) [Fiz. Tverd. Tela11, 776–779 (1969)]

    Google Scholar 

  38. Kurkin I.N., Tsvetkov E.A.: Sov. Phys. Solid State11, 3027–3029 (1970) [Fiz. Tverd. Tela11, 3610–3613 (1969)]

    Google Scholar 

  39. Abraham M.M., Finch C.B., Kolopus J.L., Lewis J.T.: Phys. Rev. B3, 2855–2864 (1971)

    Article  ADS  Google Scholar 

  40. Sattler J.P., Nemarich J.: Phys. Rev. B4, 1–5 (1971)

    Article  ADS  Google Scholar 

  41. Kornienko L.S., Rybaltovskii A.O.: Sov. Phys. Solid State15, 1322–1326 (1974) [Fiz. Tverd. Tela15, 1975–1983 (1973)]

    Google Scholar 

  42. Newman R.C., Woodward R.J.: J. Phys. C: Solid State Phys.7, L432-L435 (1974)

    Article  ADS  Google Scholar 

  43. Antipin A.A., Klimachev A.F., Korableva S.L., Livanova L.D., Fedii A.A.: Sov. Phys. Solid State17, 664–668 (1975) [Fiz. Tverd. Tela17, 1042–1049 (1975)]

    Google Scholar 

  44. Kulpa S.M.: J. Phys. Chem. Solids36, 1317–1321 (1975)

    Article  ADS  Google Scholar 

  45. Antipin A.A., Livanova L.D., Fedii A.A.: Sov. Phys. Solid State20, 1030–1034 (1978) [Fiz. Tverd. Tela20, 1783–1789 (1978)]

    Google Scholar 

  46. Korableva S.L.: Sov. Phys. Solid State20, 2139–2140 (1978) [Fiz. Tverd. Tela20, 3701–3703 (1978)]

    Google Scholar 

  47. Edgar A., Jones G.D., Presland M.R.: J. Phys. C: Solid State Phys.12, 1569–1585 (1979)

    Article  ADS  Google Scholar 

  48. Baeumler M., Schneider J., Köhl F., Tomzig E.: J. Phys. C20, L963-L965 (1987)

    Article  ADS  Google Scholar 

  49. Masterov V.F., Shtel’makh K.F., Zakharenkov L.F.: Sov. Phys. Semicond.21, 223 (1987) [Fiz. Tekh. Poluprovodn.21, 365–366 (1987)]

    Google Scholar 

  50. Boyn R.: Phys. Status Solidi B148, 11–47 (1988)

    Article  Google Scholar 

  51. Grachev V.G., Zaripov M.M., Ibragimov I.R., Rodionova M.P., Falin M.L.: Sov. Phys. Solid State31, 82–84 (1989) [Fiz. Tverd. Tela31, 149–153 (1989)]

    Google Scholar 

  52. Klein P.B., Moore F.G., Dietrich H.B.: Appl. Phys. Lett.58, 502–504 (1991)

    Article  ADS  Google Scholar 

  53. Masterov V.F.: Sov. Phys. Semicond.27, 791–801 (1993) [Fiz. Tekh. Poluprovodn.27, 1435–1452 (1993)]

    Google Scholar 

  54. Dziesiaty J., Müller St., Boyn R., Buhrow Th., Klimakow A., Kreissl J.: J. Phys. Condens. Matter7, 4271–4282 (1995)

    Article  ADS  Google Scholar 

  55. Milori D.M.B.P., Moraes I.J., Hernandes A.C., de Souza R.R., Siu Li M., Terrile M.C., Barberis G.E.: Phys. Rev. B51, 3206–3209 (1995)

    Article  ADS  Google Scholar 

  56. Priolo F., Franzò G., Coffa S., Polman A., Libertino S., Barklie R., Carey D.: J. Appl. Phys.78, 3874–3882 (1995)

    Article  ADS  Google Scholar 

  57. Carey J.D., Donegan J.F., Barklie R.C., Priolo F., Franzò G., Coffa S.: Appl. Phys. Lett.69, 3854–3856 (1996)

    Article  ADS  Google Scholar 

  58. Ishiyama T., Katayama E., Murakami K., Takahei K., Taguchi A.: J. Appl. Phys.84, 6782–6787 (1998)

    Article  ADS  Google Scholar 

  59. Strnisa F.V., Corbett J.W.: Cryst. Lattice Defects5, 261–268 (1974)

    Google Scholar 

  60. Stevens K.W.H.: Proc. Phys. Soc. Lond. A65, 209–215 (1952)

    Article  MATH  ADS  Google Scholar 

  61. Lea K.R., Leask M.J.M., Wolf W.P.: J. Phys. Chem. Solids23, 1381–1405 (1962)

    Article  ADS  Google Scholar 

  62. Abragam A., Bleaney B.: Electron Paramagnetic Resonance of Transition Ions. Oxford: Clarendon Press 1970.

    Google Scholar 

  63. Lewis H.R., Sabisky E.S.: Phys. Rev.130, 1370–1373 (1963)

    Article  ADS  Google Scholar 

  64. Ham F.S., Ludwig G.W., Watkins G.D., Woodbury H.H.: Phys. Rev. Lett.5, 468–470 (1960)

    Article  ADS  Google Scholar 

  65. Neubrand H.: Phys. Status Solidi B86, 269–275 (1978)

    Article  Google Scholar 

  66. Falin M.L., Latypov V.A., Kazakov B.N., Leushin A.M., Bill H., Lovy D.: Phys. Rev. B61, 9441–9448 (2000)

    Article  ADS  Google Scholar 

  67. Svare I., Seidel G. in: Paramagnetic Resonance (Low W., ed.), pp. 430–438. New York: Academic Press 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammerlaan, C.A.J., de Maat-Gersdorf, I. Zeeman splitting factor of the Er3+ ion in a crystal field. Appl. Magn. Reson. 21, 13–33 (2001). https://doi.org/10.1007/BF03162436

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162436

Keywords

Navigation