Skip to main content
Log in

High-frequency and -field electron paramagnetic resonance of high-spin manganese(III) in axially symmetric coordination complexes

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 2002

Abstract

High-frequency and -field electron paramagnetic resonance (HFEPR) has been used to study several complexes of high-spin manganese(III) (3d4,S = 2): [Mn(Me2dbm)X] and [Mn(OEP)X] (X = Cl, Br), where Me2dbm is the anion of 4,4′-dimethyldibenzoylmethane and OEP2− is the dianion of 2,3,7,8,12,13,17,18-octaethylporphine. These non-Kramers (integer spin) systems are not EPR-active with conventional magnetic fields and microwave frequencies. However, use of fields up to 15 T in combination with multiple frequencies in the range of 95–550 GHz allows observation of richly detailed EPR spectra. Analysis of the field- and frequency-dependent HFEPR data allows accurate determination of the following spin Hamiltonian parameters for these complexes: [Mn(Me2dbm)Cl],D = −2.45(3) cm−1; [Mn(Me2dbm)Br],D = −1.40(2) cm−1; [Mn(OEP)Cl],D = −2.40(1) cm−1; [Mn(OEP)Br],D = −1.07(1) cm−1 (E ≈ 0, andg ≈ 2.0 in all cases). Comparison of structural data with the electronic parameters for these and related complexes shows quantitatively the effects of axial and equatorial ligation on the electronic structure of Mn(III). These high-spin complexes can be employed as building blocks in the construction of single-molecule magnets. Thus the accurate determination and understanding of the electronic properties, best obtainable by HFEPR, of these monomeric units is important in understanding and improving the properties of the polynuclear single-molecule magnets which can be formed from them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christou G., Gatteschi D., Hendrickson D.N., Sessoli R.: M.R.S. Bull.25, 66–71 (2000)

    Google Scholar 

  2. Aromi G., Claude J.P., Knapp M.J., Huffman J.C., Hendrickson D.N., Christou G.: J. Am. Chem. Soc.120, 2977–2978 (1998)

    Article  Google Scholar 

  3. Aromi G., Knapp M.J., Claude J.P., Huffman J.C., Hendrickson D.N., Christou G.: J. Am. Chem. Soc.121, 5489–5499 (1999)

    Article  Google Scholar 

  4. Artus P., Boskovic C., Yoo J., Streib W.E., Brunei L.-C., Hendrickson D.N., Christou G.: Inorg. Chem.40, 4199–4210 (2001)

    Article  Google Scholar 

  5. Yoo J., Yamaguchi A., Nakano M., Krzystek J., Streib W.E., Brunei L.-C., Ishimoto H., Christou G., Hendrickson D.N.: Inorg. Chem.40, 4604–4616 (2001)

    Article  Google Scholar 

  6. Soler M., Artus P., Folting K., Huffman J.C., Hendrickson D.N., Christou G.: Inorg. Chem.40, 4902–4912 (2001)

    Article  Google Scholar 

  7. Caneschi A., Gatteschi D., Sessoli R., Barra A.L., Brunei L.C., Guillot M.: J. Am. Chem. Soc.113, 5873–5874 (1991)

    Article  Google Scholar 

  8. Barra A.L., Caneschi A., Gatteschi D., Sessoli R.: J. Am. Chem. Soc.117, 8855–8856 (1995)

    Article  Google Scholar 

  9. Barra A.L., Caneschi A., Cornia A., Fabrizi de Biani F., Gatteschi D., Sangregorio C., Sessoli R., Sorace L.: J. Am. Chem. Soc.121, 5302–5310 (1999)

    Article  Google Scholar 

  10. Aubin S.M.J., Dilley N.R., Pardi L.A., Krzystek J., Wemple M.W., Brunei L.-C., Maple M.B., Christou G., Hendrickson D.N.: J. Am. Chem. Soc.120, 4991–5004 (1998)

    Article  Google Scholar 

  11. Miller J.S., Calabrese J.C., McLean R.S., Epstein A.J.: Adv. Mater.4, 498–501 (1992)

    Article  Google Scholar 

  12. Miller J.S., Vazquez C., Calabrese J.C., McLean R.S., Epstein A.J.: Adv. Mater.6, 217–221 (1994)

    Article  Google Scholar 

  13. Miller J.S., Vazquez C., Jones N.L., McLean R.S., Epstein A.J.: J. Mater. Chem.5, 707–711 (1995)

    Article  Google Scholar 

  14. Krzystek J., Telser J., Hoffman B.M., Brunei L.-C., Licoccia S.: J. Am. Chem. Soc.123, 7890–7897 (2001)

    Article  Google Scholar 

  15. Cheng B., Cukiernik F., Fries P.H., Marchon J.-C., Scheidt W.R.: Inorg. Chem.34, 4627–4639 (1995)

    Article  Google Scholar 

  16. Oyaizu K., Haryono A., Yonemaru H., Tsuchida E.: J. Chem. Soc. Faraday Trans.94, 3393–3399 (1998)

    Article  Google Scholar 

  17. Barra A.-L., Gatteschi D., Sessoli R., Abbati G.L., Cornia A., Fabretti A.C., Uytterhoeven M.G.: Angew. Chem. Int. Ed. Engl.36, 2329–2331 (1997)

    Article  Google Scholar 

  18. Limburg J., Vrettos J.S., Crabtree R.H., Brudvig G.W., de Paula J.C., Hassan A., Barra A.-L., Duboc-Toia C., Collomb M.-N.: Inorg. Chem.40, 1698–1703 (2001)

    Article  Google Scholar 

  19. Goldberg D.P., Telser J., Krzystek J., Montalban A.G., Brunei L.-C., Barrett A.G.M., Hoffman B.M.: J. Am. Chem. Soc.119, 8722–8723 (1997)

    Article  Google Scholar 

  20. Krzystek J., Telser J., Pardi L.A., Goldberg D.P., Hoffman B.M., Brunei L.-C.: Inorg. Chem.38, 6121–6129 (1999)

    Article  Google Scholar 

  21. Bendix J., Gray H.B., Golubkhov G., Gross Z.: J. Chem. Soc. Chem. Commun.2000, 1957–1958.

  22. Hassan A.K., Pardi L.A., Krzystek J., Sienkiewicz A., Goy P., Rohrer M., Brunei L.-C.: J. Magn. Reson.142, 300–312 (2000)

    Article  ADS  Google Scholar 

  23. Jacobsen C.J.H., Pedersen E., Villadsen J., Weihe H.: Inorg. Chem.32, 1216–1221 (1993)

    Article  Google Scholar 

  24. WWW page: http://sophus.kiku.dk/software/epr/epr.html

  25. Krzystek J., Pardi L.A., Brunei L.-C., Goldberg D.P., Hoffman B.M., Licoccia S., Telser J.: Spectrochim. Acta (2002) in press.

  26. Kennedy B.J., Murray K.S.: Inorg. Chem.24, 1557–1560 (1985)

    Article  Google Scholar 

  27. Behere D.V., Mitra S.: Inorg. Chem.19, 992–995 (1980)

    Article  Google Scholar 

  28. Scheidt W.R., Lee Y.J. in: Metal Complexes with Tetrapyrrole Ligands (Buchler J.W., ed.). Berlin: Springer 1987.

    Google Scholar 

  29. Turner P., Gunter M.J., Skelton B.W., White A.H.: Aust. J. Chem.51, 835–851 (1998)

    Article  Google Scholar 

  30. Pardi L.A., Krzystek J., Telser J., Brunei L.-C.: J. Magn. Reson.146, 375–378 (2000)

    Article  ADS  Google Scholar 

  31. Dugad L.B., Behere D.V., Marathe V.R., Mitra S.: Chem. Phys. Lett.104, 353–356 (1984)

    Article  ADS  Google Scholar 

  32. Gerritsen H.J., Sabisky E.S.: Phys. Rev.132, 1507–1512 (1963)

    Article  ADS  Google Scholar 

  33. Ballhausen C.J.: Introduction to Ligand Field Theory, pp. 99–103. New York: McGraw-Hill 1962.

    MATH  Google Scholar 

  34. Brackett G.C., Richard P.L., Caughey W.S.: J. Chem. Phys.54, 4383–4401 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Krzystek.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF03170529.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krzystek, J., Telser, J., Knapp, M.J. et al. High-frequency and -field electron paramagnetic resonance of high-spin manganese(III) in axially symmetric coordination complexes. Appl. Magn. Reson. 21, 571–585 (2001). https://doi.org/10.1007/BF03162430

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162430

Keywords

Navigation