Skip to main content
Log in

Origin of the electron spin resonance signal in the manganites: from polarons to phase separation

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In the manganites L1−xMxMnO3 (L = La, Nd, Pr, …; M = Sr, Ba, Ca, …), the doping concentration introduces a mixed valence (Mn3+, Mn4+) which governs the magnetic and electric properties of the compound. Mn3+ (S = 2) is scarcely observed in electron spin resonance (ESR). In contrast, Mn4+ (S = 3/2), is a good ESR probe. However, X-band measurements show an enhanced Mn4+ susceptibility, which is the signature of some kind of coupling of the Mn4+ ions with the Mn3+ ions, but its exact nature is still controversial. We present multifrequency ESR experiments (9–385 GHz) obtained on different systems (La1−δMnO3, La1−xMnO3, La1−xCaxMnO3, and Nd1−xCaxMnO3) in the low-concentration range (0 <x< 0.33). In the paramagnetic regime, the Mn3+ spectrum cannot be observed because of fast relaxation. The signal arises from polarons, whose size, temperature and magnetic field dependences vary with M andx. The single line observed in the metallic compound evolves towards a double-peak structure visible at high frequency in La0.97MnO3. Its evolution with temperature below the magnetic transition reveals the presence of manganese ions in a different magnetic environment, i.e., phase separation. The magnetic order of the separated phase is not ferromagnetic. It is a more complex order, which depends substantially on the nature of the cation M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin S.T., Tielfel T.H., McCormack M., Fastnacht R.A., Ramesh R., Chen L.H.: Science264, 413 (1994)

    Article  ADS  Google Scholar 

  2. Asamitsu A., Moritomo Y., Tomioka Y., Arima T., Tokura Y.: Nature373, 407 (1995)

    Article  ADS  Google Scholar 

  3. Tomioka Y., Asamitsu A., Moritomo Y., Kuwahara H., Tokura Y.: Phys. Rev. Lett.74, 5108 (1995)

    Article  ADS  Google Scholar 

  4. Wollan E.O., Koehler W.C.: Phys. Rev.100, 545 (1955)

    Article  ADS  Google Scholar 

  5. Jonker G.H., van Santen J.H.: Physica16, 337 (1950), ibid.22, 707 (1956)

    Article  ADS  Google Scholar 

  6. Zener C.: Phys. Rev.82, 103 (1951)

    Article  ADS  Google Scholar 

  7. Coey J.M.D., Viret M., Ranno L.: Phys. Rev. Lett.75, 3910 (1995)

    Article  ADS  Google Scholar 

  8. Millis A.J., Littlewood P.B., Shraiman B.I.: Phys. Rev. Lett.74, 5144 (1995)

    Article  ADS  Google Scholar 

  9. Bishop A.R., Röder H.: Curr. Opin. Solid State Materials Sci.2 244 (1997)

    Article  Google Scholar 

  10. Asamitsu A., Moritomo Y., Tomioka Y., Arima T., Tokura Y.: Nature373, 407 (1995)

    Article  ADS  Google Scholar 

  11. Billinge S.J.L., DiFrancesco R.G., Kwei G.H., Neumeier J.J., Thomson J.D.: Phys. Rev. Lett.77, 715 (1996)

    Article  ADS  Google Scholar 

  12. de Teresa J.M., Ibarra M.R., Algarabel P.A., Ritter C., Marquina C., Blasco J., Garcia J., del Moral A., Arnold Z.: Nature386, 256 (1997)

    Article  ADS  Google Scholar 

  13. Schiffer P., Ramirez A.P., Bao W., Cheong S.-W.: Phys. Rev. Lett.75, 3336 (1995)

    Article  ADS  Google Scholar 

  14. Tomioka Y., Asamitsu A., Moritomo Y., Kuwahara H., Tokura Y.: Phys. Rev. Lett.74, 5108 (1995)

    Article  ADS  Google Scholar 

  15. Hennion M., Moussa F., Rodriguez-Carvajal J., Pinsard L., Revcolevschi A.: Phys. Rev. B56, R497 (1997)

    Article  ADS  Google Scholar 

  16. Hennion M., Moussa F., Biotteau G., Rodriguez-Carvajal J., Pinsard L., Revcolevschi A.: Phys. Rev. Lett.81, 1957 (1998)

    Article  ADS  Google Scholar 

  17. Millis A.J.: Nature392, 147 (1998)

    Article  ADS  Google Scholar 

  18. Moreo A., Yunoki S., Dagotto E.: Science283, 2034 (1999)

    Article  Google Scholar 

  19. de Brion S., Chouteau G., Lejay P.: Physica B259–261, 818 (1999)

    Article  Google Scholar 

  20. Oseroff B., Torikachvili M., Singley J., Ali S.: Phys. Rev. B53, 6521 (1996)

    Article  ADS  Google Scholar 

  21. Shengelaya A., Guo-meng Zhao, Keller H., Müller K.A.: Phys. Rev. Lett.77, 5296 (1996)

    Article  ADS  Google Scholar 

  22. Barra A.-L., Gatteschi D., Sessoli R., Abbati G.L., Cornia A., Fabretti A.C., Uytterhoeven M.G.: Angew. Chem. Int.36, 2329 (1997)

    Article  Google Scholar 

  23. de Brion S., Dupont F., Habermeier U.: Solid State Commun.113, 499 (2000)

    Article  Google Scholar 

  24. Millange F.: Ph. D. Thesis, Université de Caen, Caen, France 1998.

    Google Scholar 

  25. Moussa F., Hennion M., Rodriguez-Carvajal J., Moudden H., Pinsard L., Revcolevschi A.: Phys. Rev. B54, 15149 (1996)

    Article  ADS  Google Scholar 

  26. Mitsudo S., Hirano K., Nojiri H., Motokawa M., Hirota K., Nishisawa A., Kaneko N., Endoh Y.: J. Magn. Magn. Mater.177–181, 877 (1998)

    Article  Google Scholar 

  27. de Brion S., Ciorcas F., Chouteau G., Lejay P., Radaelli P., Chaillout C.: Phys. Rev. B59, 1304 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Brion, S., Dupont, F., Reinke, D. et al. Origin of the electron spin resonance signal in the manganites: from polarons to phase separation. Appl. Magn. Reson. 19, 547–556 (2000). https://doi.org/10.1007/BF03162399

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162399

Keywords

Navigation