Applied Magnetic Resonance

, Volume 9, Issue 4, pp 581–588 | Cite as

Processing of heteronuclear NMR relaxation data with the new software DASHA

  • V. Yu. Orekhov
  • D. E. Nolde
  • A. P. Golovanov
  • D. M. Korzhnev
  • A. S. Arseniev
Letter to the Editor


The new program DASHA is an efficient implementation of common data processing steps for the protein internal dynamic analysis. The “model-free” parameters and their uncertainties (Lipari G., Szabo A.: J. Am. Chem. Soc.104, 4546–4559 (1982) can be calculated from an arbitrary combination of experimental data sets (i.e. heteronuclear1H−15N or1H−13C relaxation times and NOE values at different spectrometer frequencies). Anisotropy of the molecular rotational diffusion could be also taken into account without introduction of the new adjustable parameters into the spectral density functionJ(ω), provided the structure of the molecule is known. Parameters of chemical (conformational) exchange can be estimated from the CPMG spin-lock frequency dependences (Bloomet al.: J. Chem. Phys.42, 1615–1624 (1965); Orekhovet al.: Eur. J. Biochem.219, 887–896 (1994). The program can be used both in the interactive and batch modes. It has sophisticated PostScript plotting facilities.


Rotation Correlation Time Transverse Relaxation Time ASCII File Conformational Exchange Nuclear Spin Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Wagner G.: Curr. Op. in Struct. Biol.3, 748–754 (1993)CrossRefGoogle Scholar
  2. [2]
    Lipari G., Szabo A.: J. Am. Chem. Soc.104, 4546–4559 (1982)CrossRefGoogle Scholar
  3. [3]
    Clore G.M., Szabo A., Bax A., Kay L.E., Driscoll P.C., Gronenborn A.M.: J. Am. Chem. Soc.112, 4989–4991 (1990)CrossRefGoogle Scholar
  4. [4]
    Barbato G., Ikura M., Kay L.E., Pastor R.W., Bax A.: Biochemistry31, 5269–5278 (1992)CrossRefGoogle Scholar
  5. [5]
    Carr H.Y., Purcell E.M.: Phys. Rev.94, 630–638 (1954)CrossRefADSGoogle Scholar
  6. [6]
    Bloom M., Reeves L.W., Wells E.J.: J. Chem. Phys.42, 1615–1624 (1965)CrossRefADSGoogle Scholar
  7. [7]
    Palmer A.G., Rance M., Wright P.E.: J. Am. Chem. Soc.113, 4371–4380 (1991)CrossRefGoogle Scholar
  8. [8]
    Abragam A. in: The principles of Nuclear Magnetism. England, Oxford: Clarendon Press 1961.Google Scholar
  9. [9]
    Dewerell C., Morgan R.E., Strange J.H.: Mol. Phys.18, 553–559 (1970)CrossRefADSGoogle Scholar
  10. [10]
    Reeves L.W. in: Dynamic Nuclear Magnetic Resonance Spectroscopy (Jackman L.M., Cotton F.A., eds.), pp. 83–130. New York, San Francisco, London: Academic Press 1985).Google Scholar
  11. [11]
    Orekhov V.Yu., Pervushin K.V., Arseniev A.S.: Eur. J. Biochem.219, 887–896 (1994)CrossRefGoogle Scholar
  12. [12]
    Kay L.E., Torchia D.A., Bax A.: Biochemistry28, 8972–8979 (1989)CrossRefGoogle Scholar
  13. [13]
    Barchi J.J., Grasberger B., Gronenborn A.M., Clore G.M.: Protein Science3, 15–21 (1994)CrossRefGoogle Scholar
  14. [14]
    Orekhov V.Yu., Pervushin K.V., Korzhnev D.M., Arseniev A.S.: J. Biomol. NMR6, 113–122 (1995)CrossRefGoogle Scholar
  15. [15]
    Woessner D.E.: J. Chem. Phys.37, 647–654 (1962)CrossRefADSGoogle Scholar
  16. [16]
    Happel J., Branner H. in: Low Reynolds Number Hydrodynamics. Leyden: Nordoff 1973Google Scholar
  17. [17]
    Garsia de la Torre J., Bloomfield V.A.: Biopolymers16, 1747–1763 (1977)CrossRefGoogle Scholar
  18. [18]
    Garsia de la Torre J., Bollomfield V.A.: Biopolymers16, 1765–1778 (1977)CrossRefGoogle Scholar
  19. [19]
    Garsia de la Torre J., Bloomfield V.A.: Q. Rev. Biophys.14, 81–139 (1981)CrossRefGoogle Scholar

Copyright information

© Springer 1995

Authors and Affiliations

  • V. Yu. Orekhov
    • 1
  • D. E. Nolde
    • 1
  • A. P. Golovanov
    • 1
  • D. M. Korzhnev
    • 1
  • A. S. Arseniev
    • 1
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations