Skip to main content
Log in

Microstrip superheterodyne coherent microwave bridge

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Reasons for unsatisfactory operation of the superheterodyne spectrometers at increased microwave power are considered. Recommendations for designing the superheterodyne microwave bridge of the EPR spectrometer working at the microwave power of about hundreds of milliwatt are given. These recommendations allow one to develop the spectrometer comparable to those with modulation of resonant conditions concerning reliability, stability and simplicity of operation. The experimental prototype of the coherent microwave bridge of the X-band superheterodyne EPR spectrometer with the intermediate frequency of 100 MHz is described. The microwave circuit of the bridge is assembled using microstrip hybrid integrated circuits and requires no adjustment in operation. The microwave Gunn-diode generators with the electronic tuning stabilized by dielectric resonators are used. The dynamic range of 54 dB at the maximum power of 40 mW is reached. As the microwave power increases up to the maximum value, no tendency to the degration of sensitivity equal to 5·10−11 W at the 40 MHz band is noticed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schweiger A. in: 2nd Conf. Mod. Meth. Radiofrequency Spectroscopy, pp. 68–85. Reinhardsbrunn, Nov. 11–15 1985.

  2. Teaney D.T., Klein M.P., Portis A.M.: Rev. Sci. Instrum.32, 721 (1961)

    Article  ADS  Google Scholar 

  3. Maron R.S., Poznyak A.L., Shushkevitch S.S. in: Apparatura dlya Issledovaniya Elektronnogo Paramagnitnogo Rezonansa (in Russian), p. 140. Leningrad: Energiya 1968.

    Google Scholar 

  4. Poole Ch.P., Jr. in: Electron Spin Resonance, New York: John Wiley & Sons 1967.

    Google Scholar 

  5. Kornilov S.A., Savshinski V.A., Uman S.D. in: Shumi Klistronnih Generatorov Maloy Moshnosty (in Russian), p. 200. Moskva: Sov. Radio 1972.

    Google Scholar 

  6. Buckmaster H.A., Dering J.C.: J. Sci. Instrum.43, 554 (1966)

    Article  ADS  Google Scholar 

  7. Stelmakh V.F., Tvirko L.V.: Prib. Techn. Exper.5, 131 (1986)

    Google Scholar 

  8. Strandberg M.W.P.: Rev. Sci. Instrum43, 307 (1972)

    Article  ADS  Google Scholar 

  9. Roger G., Blanc C., More C.: J. Phys. E: Sci. Instrum.14, 335 (1981)

    Article  ADS  Google Scholar 

  10. Buckmaster H.A., Hansen C.H.: J. Magn. Reson.46, 521 (1982)

    Google Scholar 

  11. Gassanov L.G., Lipatov A.A., Markov V.V., Moglichenko N.A. in: Tverdotelnie Ustroistva SVCh v Tekhnike Svyazi (in Russian), p. 288. Moskva: Radio i Svyaz 1988.

    Google Scholar 

  12. Manassewitsch V. in: Frequency Synthesizers. Theory and Design. New York: John Wiley & Sons 1976

    Google Scholar 

  13. Williams A.B. in: Designer’s Handbook of Integrated Circuits. New York: McGraw-Hill Book Company 1984

    Google Scholar 

  14. Rizhkov A.V., Popov V.N. in: Sintezatori Chastot v Tekhnike Radiosvyazi (in Russian), p. 264. Moskva: Radio i Svyaz 1991.

    Google Scholar 

  15. Dobrov V.A., Drapkin V.Z., Zaitsev K.V., Makarov Yu.A., Maron R.S., Serdyuk A.S., Uman S.D., Yanchurov V.A.: Prib. Techn. Exper.5, 133 (1986)

    Google Scholar 

  16. Lesniewski P., Hyde J.S.: Rev. Sci. Instrum.61, 2248 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rokeakh, A.I., Batin, A.M., Makhnev, O.B. et al. Microstrip superheterodyne coherent microwave bridge. Appl. Magn. Reson. 9, 441–457 (1995). https://doi.org/10.1007/BF03162354

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162354

Keywords

Navigation