Skip to main content
Log in

Frequency dependence of electron spin relaxation for threeS = 1/2 species doped into diamagnetic solid hosts

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Electron spin lattice relaxation rates (1/T1) were measured as a function of temperature at two or three microwave frequencies for threeS = 1/2 species in temperature ranges with different dominant relaxation processes. Between 10 and 50 K the contribution from the direct process to the relaxation rate was substantially greater at 94 than at 9.5 GHz for a vanadyl porphyrin doped into zinc tetratolylporphyrin. For bis(diethyldithiocarbamato)copper(II) doped into the diamagnetic Ni(II) analog the relaxation rate between 25 and 100 K is dominated by the Raman process and exhibits little frequency dependence between 9.2 and 94 GHz. For 4-hydroxy-2,2,6,6-tetramethylpiperidinoloxy (tempol) doped into a diamagnetic host the relaxation rate between about 40 and 100 K is dominated by the Raman process. In this temperature range, relaxation rates at 3.2, 9.2, and 94 GHz exhibit little frequency dependence. Above about 130 K, the relaxation rate for tempol decreases in the order S-band s> X-band > W-band. The relaxation rates in this temperature range fit a model in which 1/T1 is dominated by a thermally activated process that is assigned as rotation of the methyl groups on the nitroxyl ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Standley K.J., Vaughan R.A.: Electron Spin Relaxation Phenomena in Solids, p. 5. New York: Plenum Press 1969.

    Google Scholar 

  2. Bowman M.K., Kevan L. in: Time Domain Electron Spin Resonance (Kevan L., Schwartz R.N., eds.), pp. 68–105. New York: Wiley 1979.

    Google Scholar 

  3. Zhou Y., Bowler B.E., Eaton G.R., Eaton S.S.: J. Magn. Reson.139, 165–174 (1999)

    Article  ADS  Google Scholar 

  4. Hyde J.S., Yin J.-J., Feix J.B., Hubbell W.L.: Pure Appl. Chem.62, 255–260 (1990)

    Article  Google Scholar 

  5. Robinson B.H., Haas D.A., Mailer C.: Science263, 490–493 (1994)

    Article  ADS  Google Scholar 

  6. Prisner T.F.: Adv. Magn. Optic. Reson.20, 245–299 (1997)

    Article  Google Scholar 

  7. Du J.-L., Eaton G.R., Eaton S.S.: J. Magn. Reson. A119, 240–246 (1996)

    Article  Google Scholar 

  8. Du J.-L., Eaton G.R., Eaton S.S.: J. Magn. Reson. A117, 67–72 (1995)

    Article  Google Scholar 

  9. Du J.-L., Eaton S.S., Eaton G.R.: J. Magn. Reson. A115, 213–221 (1995)

    Article  Google Scholar 

  10. Quine R.W., Rinard G.A., Ghim B.T., Eaton S.S., Eaton G.R.: Rev. Sci. Instrum.67, 2514–2527 (1996)

    Article  ADS  Google Scholar 

  11. Rinard G.A., Quine R.W., Song R., Eaton G.R., Eaton S.S.: J. Magn. Reson.140, 69–83 (1999)

    Article  ADS  Google Scholar 

  12. Rinard G.A., Quine R.W., Ghim B.T., Eaton S.S., Eaton G.R.: J. Magn. Reson. A122, 50–57 (1996)

    Article  Google Scholar 

  13. Huisjen M., Hyde J.S.: Rev. Sci. Instrum.45, 669–675 (1974)

    Article  ADS  Google Scholar 

  14. Mailer C., Danielson J.D.S., Robinson B.H.: Rev. Sci. Instrum.56, 1917–1925 (1985)

    Article  ADS  Google Scholar 

  15. Abragam A.: The Principles of Nuclear Magnetism, pp. 405–409. London: Oxford University Press 1961.

    Google Scholar 

  16. Murphy J.: Phys. Rev.145, 241–247 (1966)

    Article  ADS  Google Scholar 

  17. Castle J.G. Jr., Feldman D.W.: Phys. Rev. A137, 671–673 (1965)

    Article  ADS  Google Scholar 

  18. Orbach R.: Proc. Phys. Soc. (Lond.)77, 821–826 (1961)

    Article  Google Scholar 

  19. Atsarkin V.A., Demidov V.V., Vasneva G.A.: Phys. Rev. B56, 9448–9453 (1997)

    Article  ADS  Google Scholar 

  20. Abragam A., Bleaney B.: Electron Paramagnetic Resonance of Transition Ions, pp. 558–559. Oxford: Clarendon Press 1970.

    Google Scholar 

  21. Barbon A., Brustolon M., Maniero A.L., Romanelli M., Brunei L.-C.: Phys. Chem. Chem. Phys.1, 4015–4023 (1999)

    Article  Google Scholar 

  22. Tsvetkov Yu.D., Dzuba S.A.: Appl. Magn. Reson.1, 179–194 (1990)

    Article  Google Scholar 

  23. Shushkakov O.A., Dzuba S.A., Tsvetkov Yu.D.: Zh. Strukt. Khim.30, 75–80 (1989)

    Google Scholar 

  24. Nakagawa K., Candelaria M.B., Chik W.W.C., Eaton S.S., Eaton G.R.: J. Magn. Reson.98, 81–91 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Eaton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eaton, S.S., Harbridge, J., Rinard, G.A. et al. Frequency dependence of electron spin relaxation for threeS = 1/2 species doped into diamagnetic solid hosts. Appl. Magn. Reson. 20, 151–157 (2001). https://doi.org/10.1007/BF03162316

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162316

Keywords