Skip to main content
Log in

Spin-lattice relaxation in hyperfine-coupled systems: Applications to interstitial diffusion and molecular dynamics

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The solid state diffusion of hydrogen, or of its pseudo-isotope muonium, provides an interesting example of spin-lattice relaxation in a 2-spin, 4-level system. The local field experienced by the interstitial atom fluctuates as it moves, inducing transitions between the coupled electron and nuclear spin states. Rate equations governing the populations of these states may be solved numerically to simulate the different relaxation functions which would be displayed by ESR, ENDOR and μSR spectroscopies and to assist in extracting motional correlation times from the experimental data. Spin relaxation in molecular radicals may be treated similarly, with different selection rules for different mechanisms: this paper treats the spin rotation mechanism and perturbation to anisotropic or isotropic components of the hyperfine interaction, caused by inter or intra-molecular motion. Conventional magnetic resonance monitors the population differences appropriate to particular transitions; only in sufficiently high fields do these distinguish the electronic and nuclear response. Muon spin relaxation is remarkable in separating out the nuclear spin projection whatever the degree of mixing of the spin states,via the asymmetry in the muon radioactive decay. Experimentally it has the advantage that measurements can be made over a wide range of field, from null external field up to thelevel crossing where the relaxation rate exhibits a striking peak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloembergen N., Purcell E.M., Pound R.V.: Phys. Rev.73, 679 (1948)

    Article  ADS  Google Scholar 

  2. Abragam A.: Principles of Nuclear Magnetism. Oxford: University Press 1961.

    Google Scholar 

  3. Slichter C.P.: Principles of Magnetic Resonance. New York: Harper and Row 1964.

    Google Scholar 

  4. Gill J.C.: Rep. Prog. Phys.38, 91 (1975)

    Article  ADS  Google Scholar 

  5. Atherton N.M.: Principles of Electron Spin Resonance. Chichester UK: Ellis Horwood 1993.

    Google Scholar 

  6. Celio M., Meier P.F.: Phys. Rev. B28, 39 (1983)

    Article  ADS  Google Scholar 

  7. Jefferies C.D.: Phys. Rev.117, 1056 (1960)

    Article  ADS  Google Scholar 

  8. Wenckebach W.Th., Swanenburg T.J.B., Poulis N.J.: Phys. Rep.14C, 181 (1974)

    Article  ADS  Google Scholar 

  9. Brewer J.H., Crowe K.M., Gygax F.N., Schenck A. in: Muon Physics (Hughes V.W., Wu C.S., eds.), III, p. 3. New York: Academic Press 1975.

    Google Scholar 

  10. Walker D.C.: Muon and Muonium Chemistry. Cambridge: Cambridge University Press 1983.

    Google Scholar 

  11. Cox S.F.J.: Physica Scripta T45, 292 (1992)

    Article  ADS  Google Scholar 

  12. Cox S.F.J., Sivia D.S.: Hyp. Int.87, 971 (1994)

    Article  ADS  Google Scholar 

  13. Kadono R.: Hyp. Int.64, 615 (1990)

    Article  ADS  Google Scholar 

  14. Cox S.F.J., Macrae R.M., Williams W.G., Fleming D.G.: Hyp. Int.87, 871 (1994)

    Article  ADS  Google Scholar 

  15. Pan J.J., Fleming D.G., Senba M., Arsenau D.J., Snooks R., Baer S., Shelley M., Percival P.W., Brodovitch J.-C., Addison-Jones B., Wlodek S., Cox S.F.J.: Hyp. Int.87, 865 (1994)

    Article  ADS  Google Scholar 

  16. Fleming D.G., Pan J.J., Senba M., Arsenau D.J., Kiefl R.F., Shelley M., Cox S.F.J., Percival P.W., Brodovitch J.-C.: Chem. Phys. (in press)

  17. Bloembergen N.: Nuclear Magnetic Relaxation. New York: N.A. Benjamin inc. 1961.

    Google Scholar 

  18. Sprenkels J.C.M., Wenckebach W.Th., Poulis N.J., Cox S.F.J.: C.R. Acad. Sci. (Paris) B25 231 (1980)

    Google Scholar 

  19. Kiefl R.F., Schneider J.W., MacFarlane A., Chow K., Duty T.L., Estle T.L. Hitti B., Lichti R.L., Ansaldo E.J., Schwab C., Percival P.W., Wei G., Wlodek S., Kojima K., Romanov W.J., McCauley J.P. Jr., Coustel N., Fischer J.E., Smith A.B. III: Phys. Rev. Lett.68, 1347 (1992)

    Article  ADS  Google Scholar 

  20. Roduner E., Prassides K., Macrae R.M., Thomas I.M., Niedermayer Ch., Binninger U., Bernhard Ch., Hofer A., Reid I.D.: Chem. Phys.192, 231 (1995)

    Article  Google Scholar 

  21. Tregenna-Piggott P.L.W., Roduner E., Santos S.: Chem. Phys.203, 317 (1996)

    Article  ADS  Google Scholar 

  22. Macdonald D.H., Sholl C.A.: 28th Congress Ampere: Magnetic Resonance and Related Phenomena. Extended Abstracts (Smith M.E., Strange J.H., eds.), p. 69. University of Kent at Canterbury 1996.

  23. Aston G.M., Jayasooriya U.A., Stride J.A., Hopkins G.A., Cox S.F.J., Cottrell S.P., Scott C.A.: 28th Congress Ampere: Magnetic Resonance and Related Phenomena. Extended Abstracts (Smith M.E., Strange J.H., eds.), p. 106. University of Kent at Canterbury 1996.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, S.F.J., Sivia, D.S. Spin-lattice relaxation in hyperfine-coupled systems: Applications to interstitial diffusion and molecular dynamics. Appl. Magn. Reson. 12, 213–226 (1997). https://doi.org/10.1007/BF03162188

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162188

Keywords

Navigation