Skip to main content

Field cycling by fast NMR probe transfer: Design and application in field-dependent CIDNP experiments

Abstract

A novel field-cycling unit with fast digital positioning of a high-resolution nuclear magnetic resonance probe in a spatially varying magnetic field is described and used to measure CIDNP spectra of the amino acid-dye (histidine-bipyridyl) photoreaction system in the range between 0 and 7 T. The pattern of nuclear polarization varies with the magnetic field. In particular, strong polarization with an emission/absorption pattern (multiplet effect) is found at low field for two histidine ringprotons with scalar coupling below 3 Hz visible only because of the high resolution made possible by the new field-cycling setup. Also for the CH2 protons in the β-position a multiplet effect is observed having a pattern changing with magnetic field. By analysis of the spin nutation the non-Boltzmann population differences of the nuclear levels have been determined.

This is a preview of subscription content, access via your institution.

References

  1. Ramsey N.F., Pound R.V.: Phys. Rev.81, 278–279 (1951)

    Article  ADS  Google Scholar 

  2. Kimmich R.: Bull. Magn. Reson.1, 195 (1980);

    Google Scholar 

  3. Noack F.: Prog. NMR Spectrosc.18, 171–276 (1986);

    Article  Google Scholar 

  4. Kimmich R.: NMR Tomography, Diffusometry, Relaxometry. Berlin: Springer 1997.

    Google Scholar 

  5. Muus L.T., Atkins P.W., McLauchlan K.A., Pedersen J.B.: Chemically Induced Magnetic Polarization. Dordrecht: Reidel 1977;

    Google Scholar 

  6. Salikhov K.M., Molin Yu.N., Sagdeev R.Z., Buchachenko A.L.: Spin Polarization and Magnetic Field Effects in Radical Reactions. Amsterdam: Elsevier 1984.

    Google Scholar 

  7. Redfield A.G.: Phys. Rev.130, 589 (1963);

    Article  ADS  Google Scholar 

  8. Redfield A.G., Fite W., Bleich H.: Rev. Sei. Instrum.39, 710 (1968);

    Article  ADS  Google Scholar 

  9. Stohrer M., Noack F.: J. Chem. Phys.67, 3729 (1977)

    Article  ADS  Google Scholar 

  10. Bagryanskaya E.G., Grishin Yu.A., Avdievitch N.I., Sagdeev R.Z., Molin Yu.N.: Chem. Phys. Lett.128, 162–167 (1986);

    Article  ADS  Google Scholar 

  11. Hore P.J., Winder S.L., Roberts C.H., Dobson C.M.: J. Am. Chem. Soc.119, 5049–5050 (1997)

    Article  Google Scholar 

  12. Bielecki A., Zax D.B., Zilm K.W., Pines A.: Rev. Sci. Instrum.57, 393–403 (1986)

    Article  ADS  Google Scholar 

  13. Allgeier J., Buntkowsky G., Hentrich S., Nack M., Vieth H.-M.: Ber. Bunsenges. Phys. Chem.93, 1281–1285 (1989)

    Google Scholar 

  14. Kaptein R., Dijkstra K., Nicolay K.: Nature274, 293–294 (1978);

    Article  ADS  Google Scholar 

  15. Kaptein R. in: NMR Spectroscopy in Molecular Biology (Pullman B., ed.), pp. 211–229. Dordrecht: Reidel 1978;

    Google Scholar 

  16. Stob S., Kaptein R.: Photochem. Photobiol.49, 565–577 (1989)

    Article  Google Scholar 

  17. Muszkat K.A., Wismontski-Knittel T.: Biochemistry24, 5416–5421 (1985)

    Article  Google Scholar 

  18. Hore P.J., Broadhurst R.W.: Prog. NMR Spectrosc.25, 345–402 (1993)

    Article  Google Scholar 

  19. Dobson C.M., Hore P.J.: Nat. Struct. Biol.5, 504–507 (1998)

    Article  Google Scholar 

  20. Buntinx G., Poizat O., Valat P., Wintgens V., Righini R., Foggi P.J.: Chim. Phys.90, 1733–1748 (1993);

    Google Scholar 

  21. Buntinx G., Naskrecki R., Poizat O.: J. Phys. Chem.100, 19380–19388 (1996)

    Article  Google Scholar 

  22. Broadhurst R.W.: Ph.D. Thesis, Oxford University, Oxford, UK 1990.

    Google Scholar 

  23. Linnell R.H., Kaczmarczyk A.: J. Phys. Chem.65, 1196–1199 (1961)

    Article  Google Scholar 

  24. Henry M.S., Hoffman M.Z.: J. Phys. Chem.83, 618–625 (1979)

    Article  Google Scholar 

  25. Castellucci E., Angeloni L., Marconi G., Venuti E., Baraldi I.: J. Phys. Chem.94, 1740–1745 (1990)

    Article  Google Scholar 

  26. Rao P.S., Simic M., Hayon E.: J. Phys. Chem.79, 1260–1263 (1975)

    Article  Google Scholar 

  27. Tsentalovich Yu.P., Morozova O.B., Yurkovskaya A.V., Hore J.P.: J. Phys. Chem. (1999) in press.

  28. Morozova O.B., Yurkovskaya A.V., Tsentalovich Yu.P., Vieth H.-M.: J. Phys. Chem. A101, 399–406 (1997)

    Article  Google Scholar 

  29. Ernst R.R., Bodenhausen G., Wokaun A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford: Clarendon Press 1987.

    Google Scholar 

  30. Kaptein R., den Hollander J.A.: J. Am. Chem. Soc.94, 6296 (1972)

    Google Scholar 

  31. Quoc-hai Ngo F., Budzinski E., Box H.C.: J. Chem. Phys.60, 3373–3377 (1974)

    Article  ADS  Google Scholar 

  32. Box H.C., Freund H.G., Lilga K.T.: J. Chem. Phys.46, 2130–2133 (1967)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grosse, S., Gubaydullin, F., Scheelken, H. et al. Field cycling by fast NMR probe transfer: Design and application in field-dependent CIDNP experiments. Appl. Magn. Reson. 17, 211–225 (1999). https://doi.org/10.1007/BF03162162

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162162

Keywords

  • Nuclear Magnetic Resonance Spectrum
  • Polarization Pattern
  • Stray Field
  • Nuclear Magnetic Resonance Line
  • Nuclear Magnetic Resonance Probe