Skip to main content
Log in

Water-filled MCM-41 characterized by double-quantum-filtered2H NMR spectral analysis

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The dynamics of water molecules confined in adsorbed layers of siliceous MCM-41 with a pore diameter of 2.8 nm is investigated at 230 K by deuteron nuclear magnetic resonance (NMR) relaxation studies including line shapes of theT 1 process and double quantum filtered (DQF) spectral analyses.2H DQF NMR is a particularly sensitive tool for the determination of the adsorbate dynamics resulting from residual quadrupolar interaction due to the local order. The amount of monolayer water is determined. The monolayer water is composed of two different water components characterized by water, with isotropic reorientational motions, exchanging with water displaying a solid-like spectrum with 4 kHz edge splitting. One may expect that the latter water is situated on surface sites in MCM-41. The restricted wobbling motion of the D-O bond is used to describe its dynamics which is one order of magnitude slower than the isotropic reorientational motion. The order parameter, the motional correlation time, and the exchange rate thus determined provide useful information on the structure and the adsorptive properties of the mesoporous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hansen E.W., Schmidt R., Stöcker M., Akporiaye D.: J. Phys. Chem.99, 4148–4154 (1995)

    Article  Google Scholar 

  2. Polnaszek C.F., Hanggi D.A., Carr P.W., Bryant R.G.: Anal. Chim. Acta194, 311–315 (1987)

    Article  Google Scholar 

  3. Morishige K., Kawano K.: J. Chem. Phys.110, 4867–4872 (1999)

    Article  ADS  Google Scholar 

  4. Takahara S., Nakano M., Kittaka S., Kuroda Y., Mori T., Hamano H., Yamaguchi T.: J. Phys. Chem. B103, 5814–5819 (1999)

    Article  Google Scholar 

  5. Turov V.V., Brei V.V., Khomenko K.N., Leboda R.: Microporous Mesoporous Mater.23, 189–196 (1998)

    Article  Google Scholar 

  6. Morishige K., Nobuoka K.: J. Chem. Phys.107, 6965–6969 (1997)

    Article  ADS  Google Scholar 

  7. Edler K.J., Reynolds P.A., White J.W.: J. Phys. Chem. B102, 3676–3683 (1998)

    Article  Google Scholar 

  8. Overloop K., Van Gerven L: J. Magn. Reson. A101, 179–187 (1993)

    Article  Google Scholar 

  9. Akporiaye D., Hansen E.W., Schmidt R., Stöcker M.: J. Phys. Chem.98, 1926–1928 (1994)

    Article  Google Scholar 

  10. Pfeifer H.: NMR — Basic Principles and Progress, vol. 7. Berlin: Springer 1972.

    Google Scholar 

  11. Pfeifer H.: Phys. Rep.26, 293–338 (1976)

    Article  ADS  Google Scholar 

  12. Zibrowius B., Caro J., Pfeifer H.: J. Chem. Soc. Faraday Trans. 1, 84, 2347–2356 (1988)

    Google Scholar 

  13. Chen Y.H., Hwang L.P.: J. Phys. Chem. B103, 5070–5080 (1999)

    Article  Google Scholar 

  14. Jacobsen J.P., Bildsoe H.K., Schaumburg K.: J. Magn. Reson.23, 153–164 (1976)

    Google Scholar 

  15. Eliav U., Navon G.: J. Magn. Reson. B103, 19–29 (1994)

    Article  Google Scholar 

  16. Eliav U., Shinar H., Navon G.: J. Magn. Reson.98, 223–229 (1992)

    Google Scholar 

  17. Sharf Y., Eliav U., Shinar H., Navon G.: J. Magn. Reson. B107, 60–67 (1995)

    Article  Google Scholar 

  18. Shinar H., Seo Y., Navon G.: J. Magn. Reson.129, 98–104 (1997)

    Article  ADS  Google Scholar 

  19. Brainard J.R., Szabo A.: Biochemistry20, 4618–4628 (1981)

    Article  Google Scholar 

  20. Blum K.: Density Matrix Theory and Applications, 1st edn., p. 85. New York: Plenum 1981.

    Google Scholar 

  21. Ernst R.R., Bodenhausen G., Wokan A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions, 1st edn., p. 40. Oxford: Clarendon 1987.

    Google Scholar 

  22. Wong T.C., Wang P.L., Duh D.M., Hwang L.P.: J. Phys. Chem.93, 1295–1302 (1989)

    Article  Google Scholar 

  23. Price W.S., Ge N.H., Hong L.Z., Hwang L.P.: J. Am. Chem. Soc.115, 1095–1105 (1993)

    Article  Google Scholar 

  24. Waldsiein P., Rabideau S.R., Jackson J.A.: J. Chem. Phys.41, 3407–3411 (1964)

    Article  ADS  Google Scholar 

  25. Chiba T.: J. Chem. Phys.39, 947–953 (1963)

    Article  ADS  Google Scholar 

  26. Ketudat S., Pound R.V.: J. Chem. Phys.26, 708–709 (1957)

    Article  ADS  Google Scholar 

  27. Chen C.Y., Li H.X., Davis M.E.: Microporous Mater.2, 17–26 (1993)

    Article  Google Scholar 

  28. Lim Y.Y., Maclachlan D.J., Smith T.D., Jamis J., Pilbrow J.R., Song R.: Aust. J. Chem.50, 53–60 (1997)

    Article  Google Scholar 

  29. Chen Y.H., Hwang L.P.: Magn. Reson. Chem.37, S84-S92 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, T.Y., Cheng, C.Y., Hwang, D.W. et al. Water-filled MCM-41 characterized by double-quantum-filtered2H NMR spectral analysis. Appl. Magn. Reson. 18, 435–453 (2000). https://doi.org/10.1007/BF03162157

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162157

Keywords

Navigation