Skip to main content
Log in

An NMR protocol for determining ice crystal size distributions during freezing and pore size distributions during freeze-drying

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Nuclear magnetic resonance water proton relaxometry is widely used to investigate pore size distributions and pore connectivity in brine-saturated porous rocks and construction materials. In this paper we show that, by replacing water with acetone, a similar method can be used to probe the porous structure of freeze-dried starch gels and therefore the ice crystal size distribution in frozen starch gels. The method relies on the observation that the starch surface acts as a powerful relaxation sink for acetone proton transverse magnetization so that Brownstein-Tarr theory can be used to extract the pore size distribution from the relaxation data. In addition the relaxation time distribution is found to depend on the spectrometer frequency and the Carr-Purcell-Meiboom-Gill pulse spacing, consistent with the existence of large susceptibility-induced field gradients within the pores. The potential of this approach for noninvasively measuring ice crystal size distributions during freezing and pore size distributions during freeze-drying in other food systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brownstein K.R., Tarr C.E.: Phys. Rev. A19, 2446–2453 (1979)

    Article  ADS  Google Scholar 

  2. Davies S., Kalam M.Z., Packer K.J., Zelaya F.O.: J. Appl. Phys.67, 3163–3170 (1990)

    Article  ADS  Google Scholar 

  3. Davies S., Hardwick A., Roberts D., Spowage K., Packer K.J.: Magn. Reson. Imaging12, 349–353 (1994)

    Article  Google Scholar 

  4. Borgia G.C., Fantazzini P., Halse M.R., Strange J.: Magn. Reson. Imaging14, 697–699 (1996)

    Article  Google Scholar 

  5. Chui M.M., Phillips R.J., McCarthy M.J.: J. Colloid Interface Sci.174, 336–344 (1995)

    Article  Google Scholar 

  6. Borgia G.C., Brown R.J.S., Fantazzini P.: Magn. Reson. Imaging14, 731–736 (1996)

    Article  Google Scholar 

  7. LeDoussal P., Sen P.N.: Phys. Rev. B46, 3465–3485 (1992)

    Article  ADS  Google Scholar 

  8. Hills B.P., Snaar J.E.M.: Mol. Phys.84, 141–157 (1995)

    Article  ADS  Google Scholar 

  9. Snaar J.E.M., Hills B.P.: Mol. Phys.86, 1137–1156 (1995)

    Article  ADS  Google Scholar 

  10. Hills B.P., Wright K.M., Snaar J.E.M.: J. Magn. Reson. Anal.2, 305–310 (1996)

    Google Scholar 

  11. Hills B.P., Wright K.M., Snaar J.E.M.: Magn. Reson. Imaging14, 305–318 (1996)

    Article  Google Scholar 

  12. Snaar J.E.M., Hills B.P.: Magn. Reson. Imaging15, 983–992 (1997)

    Article  Google Scholar 

  13. Hills B.P., Goncalves O., Harrison M., Godward J.: Magn. Reson. Chem.35, S29-S36 (1997)

    Article  Google Scholar 

  14. Provencher S.W.: Comp. Phys. Com.27, 213–227 (1982)

    Article  ADS  Google Scholar 

  15. Glasel J.A., Lee K.H.: J. Am. Chem. Soc.96, 970–978 (1974)

    Article  Google Scholar 

  16. Kleinberg R.L., Horsfield M.A.: J. Magn. Reson.88, 9–19 (1990)

    Google Scholar 

  17. Yu I.: J. Magn. Reson. A104, 209–211 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godward, J., Gunning, P. & Hills, B.P. An NMR protocol for determining ice crystal size distributions during freezing and pore size distributions during freeze-drying. Appl. Magn. Reson. 17, 537–556 (1999). https://doi.org/10.1007/BF03162085

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162085

Keywords

Navigation