Skip to main content
Log in

Paramagnetic centres in exinite, vitrinite and inertinite

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Exinite, vitrinite and inertinite from durain, vitrain and clarain of Polish medium-rank coal with 85.6% C were investigated by X-band (9.3 GHz) electron paramagnetic resonance spectroscopy. Multicomponent structure of the EPR spectra of these macérais was analysed. The number of component lines, their lineshapes and parameters: linewidths andg factors, were determined. Total concentrations and concentrations of paramagnetic centres responsible for the component lines were measured. The broad Gaussian, broad Lorentzian and narrow Lorentzian lines were observed in the experimental spectra of exinite and vitrinite. The EPR spectra of inertinite are superposition of two narrow Lorentzian lines with different linewidths. The evolution of paramagnetic centres during heating of the macerais at 300–650°C was studied. Paramagnetic centres with broad Lorentzian lines are the most active ones in the thermal decomposition. The EPR results indicate reactions between individual macerais during thermal decomposition of coal. Thermally excited multiplet states were found in exinite and vitrinite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petrakis L., Grandy D.W.: Free Radicals in Coals and Synthetic Fuels (Anderson L.L., ed.), chap. 4, pp. 71–136. Amsterdam: Elsevier 1983.

    Google Scholar 

  2. Duliba E.P., Clarkson R.B. in: Magnetic Resonance. Introduction, Advanced Topics and Applications to Fossil Energy (Petrakis L., Fraissard J.P., eds.), pp. 587–596. Dordrecht: Reidel 1984.

    Google Scholar 

  3. Schlick S., Kevan L. in: Magnetic Resonance. Introduction, Advanced Topics and Applications to Fossil Energy (Petrakis L., Fraissard J.P., eds.), pp. 655–665. Dordrecht: Reidel 1984.

    Google Scholar 

  4. Ito O., Seki H., Iino M.: Bull. Chem. Soc. Jpn.60, 2967–2975 (1987)

    Article  Google Scholar 

  5. Van Krevelen D.W.: Coal. Typology, Physics, Chemistry, Constitution, chap. 15. Amsterdam: Elsevier 1993.

    Google Scholar 

  6. Silbernagel B.G., Bernardo M., Thomann H.: Fuel72, 1219–1223 (1993)

    Article  Google Scholar 

  7. Doetschman D.C., Mehlenbacher R.C., Ito O.: Energy Fuels8, 907–919 (1994)

    Article  Google Scholar 

  8. Sanada Y., Kumagai H., Sasaki M.: Fuel73, 840–842 (1994)

    Article  Google Scholar 

  9. Czechowski F., Jezierski A.: Energy Fuels11, 951–964 (1997)

    Article  Google Scholar 

  10. Smidt J., Van Krevelen D.W.: Fuel37, 355–368 (1959)

    Google Scholar 

  11. Silbernagel B.G., Gebhard L.A., Dyrkacz G.R. in: Magnetic Resonance. Introduction, Advanced Topics and Applications to Fossil Energy (Petrakis L., Fraissard J.P., eds.), pp. 645–653. Dordrecht: Reidel 1984

    Google Scholar 

  12. Silbernagel B.G., Gebhard L.A., Dyrkacz G.R., Bloomquist C.A.: Fuel65, 558–565 (1986)

    Article  Google Scholar 

  13. Więckowski A.B.: Exp. Tech. Phys.36, 299–303 (1988)

    Google Scholar 

  14. Pilawa B., Więckowski A.B., Trzebicka B.: Radiat. Phys. Chem.45, 899–908 (1995)

    Article  ADS  Google Scholar 

  15. Yokono T., Iyama S., Sanada Y., Shimokawa S., Yamada E.: Fuel65, 1701–1704 (1986)

    Article  Google Scholar 

  16. Fowler T.G., Bartle K.D., Kandiyoti R.: Fuel66, 1407–1412 (1987)

    Article  Google Scholar 

  17. Fowler T.G., Bartle K.D., Kandiyoti R.: Fuel67, 173–176 (1988)

    Article  Google Scholar 

  18. Fowler T.G., Bartle K.D., Kandiyoti R.: Fuel67, 1249–11254 (1988)

    Article  Google Scholar 

  19. Ibrahim M.M., Seehra M.S.: Fuel Process. Technol.25, 215–226 (1990)

    Article  Google Scholar 

  20. Nickel-Pepin-Donat B., Jeunet A., Charcosset H., Jamond M.: Fuel69, 856–860 (1990)

    Article  Google Scholar 

  21. Pilawa B., Wieckowski A.B., Lewandowski M.: Fuel74, 1654–1657 (1995)

    Article  Google Scholar 

  22. Pilawa B., Więckowski A.B., Lewandowski M.: Fuel75, 1181–1185 (1996)

    Article  Google Scholar 

  23. Pilawa B., Więckowski A.B., Lewandowski M., Dzierzęga-Lęcznar A.: Fuel76, 79–83 (1997)

    Article  Google Scholar 

  24. Pilawa B., Więckowski A.B., Lewandowski M., Nassalski G.: Erdöl Erdgas Kohle114, 37–40 (1998)

    Google Scholar 

  25. Opfermann J.: Programmpaket Nichtlineare Ausgleichsrechnung, No 42. Jena: Friedrich-Schiller-Universität 1984.

    Google Scholar 

  26. Wertz J.E., Bolton J.R.: Electron Spin Resonance. Elementary Theory and Practical Applications. New York: McGraw-Hill Book Company 1972.

    Google Scholar 

  27. Pilawa B., Więckowski A.B.: Fuel76, 1173–1177 (1997)

    Article  Google Scholar 

  28. Joseph J.T., Fisher R.B., Masin C.A., Dyrkacz G.R., Bloomquist C.A., Winans R.E.: Energy Fuels5, 724–729 (1991)

    Article  Google Scholar 

  29. Duber S., Więckowski A.B.: Fuel63, 1474–1475 (1984)

    Article  Google Scholar 

  30. Rothenberger K.S., Sprecher R.F., Castellano S.M., Retcofsky H.L. in: Magnetic Resonance of Carbonaceous Solids (Botto R.E., Sanada S., eds.), pp. 581–604, Symposium of 1989 International Chemical Congress of Pacific Basin Societies, Honolulu, Hawaii, December 17–22, 1989. Advances in Chemistry Series, vol. 229, chap. 26. Washington DC: American Chemical Society 1993

    Google Scholar 

  31. Smirnova T.I., Smirnov A.I., Clarkson R.B., Beiford R.L.: J. Phys. Chem.98, 2464–2468 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Więckowski, A.B., Pilawa, B., Lewandowski, M. et al. Paramagnetic centres in exinite, vitrinite and inertinite. Appl. Magn. Reson. 15, 489–501 (1998). https://doi.org/10.1007/BF03162031

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162031

Keywords

Navigation