Skip to main content
Log in

Hysteresis and memory of the magnetic resonance of conduction electrons in solids. From bistability to stochastic resonance

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The magnetic resonance line of conduction electrons in solids may exhibit bistable hysteresis if several conditions are fulfilled. Its mechanism is presented and the manifestation of bistability in the ESR of conduction electrons in single crystal and polycrystalline samples is discussed. The characteristics of the dynamics of the bistability show that bistable resonance can be assimilated to one-dimensional overdamped motion of the spin system in the nuclear field space, driven by a bistable potential. It is shown for the first time that noise acting on this bistable resonance can create order, by the phenomenon of stochastic resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haken H.: Synergetics. Berlin: Springer 1983.

    Google Scholar 

  2. Kramers H.A.: Physica7, 24 (1940)

    Article  MathSciNet  Google Scholar 

  3. Weisenfeld K., Moss F.: Nature373, 33 (1995)

    Article  ADS  Google Scholar 

  4. Kaplan A.E.: Phys. Rev. Lett.48, 138 (1982); Kaplan A.E., Elci A.: Phys. Rev. B29, 820 (1984); Gabrielse G., Dehmelt H., Kells W.: Phys. Rev. Lett.54, 537 (1985)

    Article  ADS  Google Scholar 

  5. Binet L., Gourier D.: J. Phys. Chem.100, 17630 (1996)

    Article  Google Scholar 

  6. Aubay E., Gourier D.: Phys. Rev. B47, 15023 (1993)

    Article  ADS  Google Scholar 

  7. Binet L., Gourier D.: Phys. Rev. B56, 2688 (1997)

    Article  ADS  Google Scholar 

  8. Vigreux C., Binet L., Gourier D.: J. Phys. Chem. B102, 1176 (1998)

    Article  Google Scholar 

  9. Mandel P., Smith S.D., Wherrett B.S.: Optical Bistability Towards Optical Computing. Amsterdam: North Holland 1987.

    Google Scholar 

  10. Overhauser A.: Phys. Rev.92, 411 (1953)

    Article  MATH  ADS  Google Scholar 

  11. Gueron M., Ryter C.: Phys. Rev. Lett.3, 338 (1959); Ryter C:ibid. 5, 10 (1960)

    Article  ADS  Google Scholar 

  12. Abragam A.: Principles of Nuclear Magnetism. Oxford: Clarendon 1983.

    Google Scholar 

  13. Gotschy B., Denninger G.: Mol. Cryst. Liq. Cryst.237, 435 (1993)

    Article  Google Scholar 

  14. Aubay E., Gourier D.: Solid State Commun.85, 821 (1993)

    Article  ADS  Google Scholar 

  15. Feher G., Kip A.F.: Phys. Rev.98, 337 (1955)

    Article  ADS  Google Scholar 

  16. Gourier D., Aubay E., Guglielmi J.: Phys. Rev. B50, 2941 (1994)

    Article  ADS  Google Scholar 

  17. Gerbault D., Gourier D.: Phys. Rev. B54, 6315 (1996)

    Article  ADS  Google Scholar 

  18. Benzi R., Sutera S., Vulpiani A.: J. Phys. A14, L453 (1981); Nicolis C: Tellus34, 1 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  19. Fauve S., Heslot F.: Phys. Lett.97A, 5 (1983)

    ADS  Google Scholar 

  20. McNamara B., Weisenfeld K., Roy R.: Phys. Rev. Lett.60, 2626 (1988)

    Article  ADS  Google Scholar 

  21. Douglass J.K., Wilkens L., Pantazelou E., Moss F.: Nature365, 337 (1993)

    Article  ADS  Google Scholar 

  22. Jung P., Behn U., Pantazelou E., Moss F.: Phys. Rev. A46, 1709 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gourier, D., Binet, L. & Gerbault, D. Hysteresis and memory of the magnetic resonance of conduction electrons in solids. From bistability to stochastic resonance. Appl. Magn. Reson. 14, 183–201 (1998). https://doi.org/10.1007/BF03161889

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03161889

Keywords

Navigation