Wetlands

, Volume 19, Issue 4, pp 835–857 | Cite as

Techniques for restoration of disturbed coastal wetlands of the Great Lakes

  • Douglas A. Wilcox
  • Thomas H. Whillans
Article

Abstract

A long history of human-induced degradation of Great Lakes wetlands has made restoration a necessity, but the practice of wetland restoration is relatively new, especially in large lake systems. Therefore, we compiled tested methods and developed additional potential methods based on scientific understanding of Great Lakes wetland ecosytems to providc an overview of approaches for restoration. We addressed this challenge by focusing on four general fields of science: hydrology, sedimentology, chemistry, and biology. Hydrologic remediation methods include restoring hydrologic connections between diked and hydrologically altered wetlands and the lakes, restoring water tables lowered by ditching, and restoring natural variation in lake levels of regulated lakes Superior and Ontario. Sedimentological remediation methods include management of sediment input from uplands, removal or proper management of dams on tributary rivers, and restoration of protective barrier beaches and sand spits. Chemical remediation methods include reducing or eliminating inputs of contaminants from point and non-pont sources, natural sediment remediation by biodegradation and chemical degradation, and active sediment remediation by removal or byin situ treatment Biological remediation methods include control of non-target organisms, enhancing populations of target organisms, and enhancing habitat for target organisms. Some of these method were used in three major restoration projects (Metzger Marsh on Lake Erie and Cootes Paradise and Oshawa Second Marsh on Lake Ontario), which are described as case studies to show practical applications of wetland restoration in the Great Lakes. Successful restoration techniques that do not require continued manipulation must be founded in the basic tenets of ecology and should mimic natural processes. Success is demonstrated by the sustainability, productivity, nutrient-retention ability, invasibility, and biotic interactions within a restored wetland.

Key Words

biology chemistry Great Lakes hydrology sedimentology wetland restoration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anderson, R. C. 1996. The role of research in ecosystem restoration.In Proceedings of the Ecosystem Restoration Workshop. University of Michigan, Ann Arbor, MI, USA.Google Scholar
  2. Apfclbaum, S. I. and C. E. Sams. 1987. Ecology and control of reed canary grass (Phalarisarundinacea L.). Natural Areas Journal 7:67–74.Google Scholar
  3. Averett, D. E., B. D. Perry, E. J. Torrey, and J. A. Miller. 1990. Review of removal, containment, and treatment technologies for remediation of contaminated sediments in the Great Lakes. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, USA. Miscellancous Paper EL-90-25.Google Scholar
  4. Baedke, S. J. and T. A. Thompson. 1993. Preliminary report of late holocene lake-level variation in northern Lake Michigan: part 1. Indiana University, Bloomington, IN, USA. Open File Report 93-4.Google Scholar
  5. Ball, J. P. 1990. Influence of subsequent flooding depth on cattail control by burning and mowing. Journal of Aquatic Plant Management 28:32–36.Google Scholar
  6. Balogh, G. R. 1986. Ecology, distribution, and control of purple loosestrife (Lythrum salicaria) in Ohio’s Lake Erie marshes. M.S. Thesis. Ohio State University, Columbus, OH, USA.Google Scholar
  7. Barry, T. and E. Machowski. 1996. A preliminary plan for statewide management of northern pike in Connecticut. State of Connecticut Department of Environmental Protection, Hartford, CT, USA. F-57-R-14 Final Report.Google Scholar
  8. Belusz, L. C. 1978. An evaluation of the muskellunge fishery of Lake Pomme de Terre and efforts to improve stocking success. p. 292–297.In R. L. Kendall (ed.) Selected Coolwater Fishes of North America. American Fisheries Society, Washington, DC, USA.Google Scholar
  9. Bennett, G. W. 1970. Management of Lakes and Ponds. 2nd edition. Robert E. Krieger Publishing Company, Malabar, FL, USA.Google Scholar
  10. Berg, S., E. Jeppersen, and M. Sendergaard. 1997. Pike (Esox lucius L.) stocking as a biomanipulation tool. 1. Effects on the fish population in Lake Lyng, Denmark. Hydrobiologia 342/343:311–318.Google Scholar
  11. Blokpoel, H. and S. Jarvic. 1995. Use of reefrafts to create habitat for birds and fish. p. 51–54.In J. R. M. Kelso and J. H. Hartig (eds.) Methods of Modifying Habitat to Benefit the Great Lakes Ecosystem. CISTI (Canadian Institute of Science Technical Information) Occasional Paper No. 1.Google Scholar
  12. Blossey, B. 1993. Herbivory below ground and biological weed control: life history of a root-boring weevil on purple loosestrife. Occologia 94:380–387.Google Scholar
  13. Blosey, B., D. Schroeder, S. D. Hight, and R. A. Malecki. 1994. Host specificity and environmental impact of two leaf bectles (Galerucella calmariensis andG. pusilla) for biological control of purple loosestrife,Lythrum salicaria. Weed Science 42:134–140.Google Scholar
  14. Bookhout, T. A., K. E. Bednarik, and R. W. Kroll. 1989. The Great Lakes marshes. p. 131–156.In L. M. Smith, R. L. Pederson, and R. M. Kaminski (eds.) Habitat Management for Migrating and Wintering Waterfowl in North America. Texas Tech University Press, Lubbock, TX, USA.Google Scholar
  15. Bowen, K. 1998. Marsh vegetation in Cootes Paradise. Royal Botanical Gardens. Hamilton, Ontario, Canada. Vegetation Monitoring Fact Sheet 1998.Google Scholar
  16. Bowen, K. and T. Theijsmeijer. 1998. The Cootes Paradise fishway. Royal Botanical Gardens, Hamilton, Ontario, Canada. Fishway Fact Sheet 1998.Google Scholar
  17. Boylen, C. W., L. W. Eichler, and J. W. Sutherland. 1996. Physical control of Eurasian watermilfoil in an oligotrophic lake. Hydrobiologia 340:213–218.Google Scholar
  18. Bradshaw, A. D. 1984. Ecological principles and land reclamation practice. Landscape Planning 11:35–48.Google Scholar
  19. Bradshaw, A. D. 1987. The reclamation of derelict land and the ecology of ecosystems. p. 53–74.In W. R. Jordan III, M. P. Gilpin, and J. D. Aber (eds.) Restoration Ecology: a Synthetic Approach to Ecological Research. Cambridge University Press, Cambridge, UK.Google Scholar
  20. Bradshaw, A. D. 1993. Restoration ecology as a science. Restoration Ecology 1:71–73.Google Scholar
  21. Brady, V. J., B. J. Cardinale, and T. M. Burton. 1995. Zebra mussels in a coastal marsh: the seasonal and spatial limits of colonization. Journal of Great Lakes Research 21:587–593.CrossRefGoogle Scholar
  22. Bray, K. 1995. McKellar River habitat creation project. p. 106–111.In J. R. M. Kelso and J. H. Hartig (eds.) Methods of Modifying Habitat to Benefit the Great Lakes Ecosystem. CISTI (Canadian Institute of Science Technical Information) Occasional Paper No. 1.Google Scholar
  23. Broussard, L. J. 1988. Report on current marsh management engineering practices. U.S. Department of Agriculture, Soil Conservation Service, Alexandria, LA, USA.Google Scholar
  24. Cairns, J. Jr. 1987. Disturbed ecosystems as opportunities for research in restoration ecology. p. 307–320.In W. R. Jordan III, M. P. Gilpin, and J. D. Aber (eds.) Restoration Ecology: a Synthetic Approach to Ecological Research. Cambridge University Press, Cambridge, UK.Google Scholar
  25. Carpenter, S. R. and D. M. Lodge. 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26:341–370.Google Scholar
  26. Cecile, C. P. 1983. Oshawa Second Marsh baseline study. Environment Canada, Ottawa, Ontario, Canada.Google Scholar
  27. City of Oshawa. 1992. Oshawa Second Marsh management plan. City of Oshawa, Oshawa, Ontario, Canada.Google Scholar
  28. Clewell, A. F. 1993. Ecology, restoration ecology, and ecological restoration. Restoration Ecology 1:141.Google Scholar
  29. Connell, J. H. 1978,. Diversity in tropical rain forests and coral reefs. Science 199:1302–1310.PubMedGoogle Scholar
  30. Conservation Foundation. 1988. Protecting America’s wetlands: an action agenda. The Conservation Foundation, Washington, DC. USAGoogle Scholar
  31. Cooke, G. D. 1980. Lake-level drawdown as a macrophyte control technique. Water Resources Bulletin 16:317–322.Google Scholar
  32. Cross, D. H. and K. L. Fleming. 1989. Control ofPhragmites or common reed. U.S. Fish and Wildlife Service, Washington, DC, USA. Fish and Wildlife Leaflet 13.4.12.Google Scholar
  33. Denney, B. E. and K. S. Fricbergs. 1979. The use of anchored beach system in Metro Toronto. Proceedings on Coastal Structures, ’79 ASCE 2:838.Google Scholar
  34. Diamond, J. 1987. Reflections on goals and on the relationship between theory and practice. p. 329–336.In W. R. Jordan III, M. P. Gilpin, and J. D. Aber (eds.) Restoration Ecology: a Synthetic Approach to Ecological Research. Cambridge University Press, Cambridge, UK.Google Scholar
  35. Dushenko, W. T., A. Crowder, and B. Cameron. 1990. Revegetation in the Bay of Quinte, Lake Ontario: preliminary lab and field experiments. p. 245–254.In J. Kusler and R. Smardon (eds.) Proceedings: International Wetland Symposium, Wetlands of the Great Lakes. Association of State Wetland Managers, Inc., Berne, NY, USA.Google Scholar
  36. Engel, S. 1985. Aquatic community interactions of submerged macrophytes. Wisconsin Department of Natural Resources, Madison, WI, USA. Technical Bulletin No. 156.Google Scholar
  37. Engel, S. 1990. Ecological impacts of harvesting macrophytes in Halverson Lake, Wisconsin. Journal of Aquatic Plant Management 28:41–45.Google Scholar
  38. Ewel, J. J. 1987. Restoration is the ultimate test of ecological theory. p. 31–33.In W. R. Jordan III, M. P. Gilpin, and J. D. Aber (eds.) Restoration Ecology; a Synthetic Approach to Ecological Research. Cambridge University Press, Cambridge, UK.Google Scholar
  39. Fahnenstiel, G. L., T. B. Bridgeman, G. A. Lang, M. J. McCormick, and T. F. Nalepa. 1995., Phytoplankton productivity in Saginaw Bay, Lake Huron: effects of zebra mussel (Dreissena polymorpha) colonization. Journal of Great Lakes Research 21:465–475.Google Scholar
  40. French, J. R. P. III. D. A. Wilcox, and S. J. Nichols. 1999. Passing of northern pike and common carp through experimental barriers designed for use in wetland restoration. Wetlands 19:883–888.CrossRefGoogle Scholar
  41. Galatowitsch, S. M., N. O. Anderson, and P. D Ascher. 1999. Invasiveness in wetland plants in temperate North America. Wetlands 19:733–755.CrossRefGoogle Scholar
  42. Geiling, D. 1995. McVicar Creek mouth island creation. p. 39–44.In J. R. M. Kelso and J. H Hartig (eds.) Methods of Modifying Habitat to Benefit the Great Lakes Ecosystem., CISTI (Canadian Institute of Science Technical Information) Occasional Paper No. 1.Google Scholar
  43. Gilbert, O. L. and P. Anderson. 1998. Habitat Creation and Repair. Oxford University Press, New York, NY, USA.Google Scholar
  44. Goeman, T. J. and P. D. Spencer. 1992. Fish community responses to manipulation of northern pike and yellow perch densities in a Minnesota centrarchid lake. Minnesota Department of Natural Resources, St. Paul, MN, USA. Investigational Report 416.Google Scholar
  45. Grillmayer, R. 1995. Transplanting aquatic vegetation in Collingwood Harbour. p. 73–81.In J. R. M. Kclso and J. H. Hartig (eds.) Methods of Modifying Habitat to Benefit the Great Lakes Ecosystem. CISTI (Canadian Institute of Science Technical Information) Occasional Paper No. 1.Google Scholar
  46. Grimm, M. P. and J. J. G. M. Backx. 1990. The restoration of shallow eutrophic lakes, and the role of northern pike, aquatic vegetation, and nutrient concentration. Hydrobiologia 200/201:557–566.Google Scholar
  47. Hamilton Region Conservation Authority. 1995. Welcome to the littoral zone-suggestions for natural improvements. Hamilton Region Coservation Authority, Ancaster, Ontario, Canada.Google Scholar
  48. Hanson, D. A. and T. L. Margenau. 1992. Movement, habitat sclection, behavior and survival of stocked muskellunge. American Journal of Fisheries Management 12:474–483.Google Scholar
  49. Henshaw, B. 1996. Background document to the Second Marsh Workshop. Friends of Second Marsh, Oshaw, Ontario, Canada.Google Scholar
  50. Hight, S. D., B. Blossey, and R. Declerck-Floate. 1995. Establishment of insect biological control agents from Europe againstLythrum salicaria in North America. Environmental Entomology 24:967.Google Scholar
  51. Hobbs, R. J. and D. A. Norton. 1996. Towards a conceptual framework for restoration ecology. Restoration Ecology 4:93–110.Google Scholar
  52. Hutchison, M. 1992. Vegetation management guideline: reed canary grass (Phalaris arundinacea L.). Natural Areas Journal 12:159.Google Scholar
  53. ILERSB. 1981. Lake Erie water-level study. International Lake Erie Regulation Study Board, International, Joint Commission. Windsor, Ontario, Canada.Google Scholar
  54. Jackson, S. T. and D. K. Singer. 1995. Report on pollen and macrofossil analyses of Metzger Marsh sediment cores. Northern Arizona University, Flagstaff, AZ, USA.Google Scholar
  55. Jarvie, S. and H. Blokpoel. 1996. Reefrafts for common terns and fish: guidelines for design, construction, and operation. Environment Canada, Downsview. ON, Canada. Great Lakes 2000 Cleanup Fund Fact Sheet.Google Scholar
  56. Johnstone, I. M. 1986. Plant invasion windows: a time-based classification of invasion potential. Biological Reviews 61:369–394.Google Scholar
  57. Kaminski, R. M., H. R. Murkin, and C. E. Smith. 1985. Control of cattail and bulrush by cutting and flooding. p. 253–262.In H. H. Prince and F. M. D’Itri (eds.) Coastal Wetlands. Lewis Publishers, Inc., Chelsea, MI, USA.Google Scholar
  58. Keddy, P. A. 1983. Shreline vegetation in Axe Lake, Ontario: effects of exposure on zonation patterns. Ecology 64:331–344.Google Scholar
  59. Keddy, P. A. and A. A. Reznicek. 1986. Great Lakes vegetation dynamics: the role of fluctuating water levels and buried seeds. Journal of Great Lakes Research 12:25–36.CrossRefGoogle Scholar
  60. Keough, J. R., T. A. Thompson, G. R. Guntenspergen, and D. A. Wilcox. 1999. Hydrogeomorphic factors and ecosystem responses in coastal wetlands of the Great Lakes. Wetlands 19:821–834.CrossRefGoogle Scholar
  61. King, D. R. and G. S. Hunt. 1967. Effect of carp on vegetation in a Lake Erie marsh. Journal of Wildlife Management 31:181–188.Google Scholar
  62. King, L. J. 1966. Weeds of the World: Biology and Control. Interscience Publishers, Inc., New York, NY, USA.Google Scholar
  63. Korschgen, C. E. and W. L. Green. 1988. American wildcelery (Vallisneria americana): ecological considerations for restoration. U.S. Fish and Wildlife Service, Washington, DC, USA. Fish and Wildlife Technical Report 19.Google Scholar
  64. Kowalski, K. P. and D. A. Wilcox. 1999. Use of historical and geospatial data to guide the restoration of a Lake Erie coastal marsh. Wetlands 19:858–868.CrossRefGoogle Scholar
  65. LaMarra, V. J., Jr. 1975. Digestive activities of carp as a major contributor to the nutrient loading of lakes. Verhandlungen Internationale Vereinigung fuer Theoretische und Angewandte Limnologie 19:2461–2468.Google Scholar
  66. Leadbeater, D. 1998. Vegetation monitoring, Oshawa Second Marsh 1997. Friends of Second Marsh, Oshawa, Ontario., Canada.Google Scholar
  67. Lee, P. F. 1995. Aquatic macrophyte establishment in McKellar River embayments at Thunder Bay, Ontario. p. 179–183.In J. R. M. Kelso and J. H. Hartig (eds.) Methods of Modifying Habitat to Benefit the Great Lakes Ecosystem. CISTI (Canadian Institute of Science Technical Information) Occasional Paper No. 1.Google Scholar
  68. Lougheed, V. L., B. Crosbie, and P. Chow-Fraser. 1998. Predictions on the effect of common carp (Cyprinus carpio) exclusion on water quality, zooplaankton, and submergent macrophytes in a Great Lakes wetland. Canadian Journal of Fisheries and Aquatic Sciences 55:1189–1197.Google Scholar
  69. Lowe, K. S. 1988. Help for Lake St. Clair’s ducks. Michigan Outof-Doors January:22–24.Google Scholar
  70. MacArthur, R. H. and E. O. Wilson. 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, NJ, USA.Google Scholar
  71. MacMahon, J. A. 1987. Disturbed lands and ecological theory: an essay about a mutualistic association. p. 221–237.In W. R. Jordan III, M. P. Gilpin, and J. D. Aber (eds.) Restoration Ecology: a Synthetic Approach to Ecological Research. Cambridge University Press, Cambridge, UK.Google Scholar
  72. Madsen, J. D. 1997. Methods for management of nonindigenous aquatic plants. p. 145–171.In J. O. Luken and J. W. Theriot (eds.) Assessment and Management of Plant Invasions. Springer, New York, NY, USA.Google Scholar
  73. Madsen, J. D., L. W. Eichler, and C. W. Boylen. 1988. Vegetative spread of Eurasian watermilfoil in Lake George. Journal of Aquatic Plant Management 26:47–50.Google Scholar
  74. Magnuson, J. J., H. A. Regier, W. J. Christien, and W. C. Sonzogi. 1980. To rehabilitate and restore Great Lakes ecosystems. p. 95–112.In J. Cairns (ed.) The Recovery Process in Damaged Ecosystems. Ann Arbor Science, Ann Arbor, MI, USA.Google Scholar
  75. Margenau, T. L. 1992. Survival and cost-effectiveness of stocked fall fingerlings and spring yearling muskellunge in Wisconsin. North American Journal of Fisheries Management 12:484–493.Google Scholar
  76. Marks, M., B. Lapin, and J. Randall. 1994.Phragmites australis (P. communis): threats, management, and monitoring. Natural Areas Journal 14:285–294.Google Scholar
  77. Mather, M. E. and D. H. Wahl. 1989. Comparative mortality of three esocids due to stocking stressors. Canadian Journal of Fisheries and Aquatic Sciences 46:214–217.Google Scholar
  78. Mathers, A. and K. Hartley. 1995. Sawquini Creek marsh channel creation project. p. 197–199.In J. R. M. Kelso and J. H. Hartig (eds.) Methods of Modifying Habitat to Benefit the Great Lakes Ecosystem CISTI (Canadian Institute of Science Technical Information) Occasional Paper No. 1.Google Scholar
  79. Maynard, L. and D. A. Wilcox. 1997. Coastal wetlands of the Great Lakes. State of the Lakes Ecosystem Conference ’96. Environment Canada and U.S. Environmental Protection Agency, Washington, DC, USA. EPA 905-R-97-015b.Google Scholar
  80. McHattic B., M. Taylor, D. Hoysak, C. Seburn, D. Seburn. D. Dennis, C. A. Bishop, P. J. Evans, and D. V. Weseloh. 1995. Habitat rehabilitation in the Great Lakes: techniques for enhancing biodiversity. Great Lakes 2000 Cleanup Fund, Environment Canada, Ontario Region, Burlington, Ontario, Canada.Google Scholar
  81. McNicoll, D. M. and A. S. Baweja. 1995. Bioremediation of petroleum-contaminated soils: an innovative, environmentally friendly technology. Environment Canada, Ottawa, Ontario, Canada.Google Scholar
  82. Meeker, J. E. 1996. Wild-rice and sedimentation processes in a Lake Superior coastal wetlands. Wetlands 16:219–231.CrossRefGoogle Scholar
  83. Meeks, R. L. 1969. The effect of drawdown date on wetland plant succession. Journal of Wildlife Management 33:817–821.Google Scholar
  84. Mitchell, D. S. 1974. Water weeds. p. 13–23.In D. S. Mitchell (ed.) Aquatic Vegetation and Its Use and Control. United Nations Educational, Scientific, and Cultural Organization, Paris, France.Google Scholar
  85. Naglich, F. G. 1994. Reed canarygrass (Phalaris arundinacea L.) in the Pacific Northwest: growth parameters, economic uses, and control. M.S. Thesis. Evergree State College, Olympia, WA, USA.Google Scholar
  86. Navarro, J. E. and D. L. Johnson. 1992. Ecology of stocked northern pike in two Lake Erie controlled wetlands. Wetlands 12:171–177.CrossRefGoogle Scholar
  87. Nichols, S. J., M. G. Black, and J. D. Allen. 1999. Use of refugia to protect unionid populations from zebra mussel induced mortality. p. xx–xx.In Proceedings of the Freshwater Mussel Symposium: Conservation, Captive Care, and Propagation. Columbus, OH, USA. (in press).Google Scholar
  88. Nichols, S. J. and D. A. Wilcox. 1997. Burrowing saves Lake Erie clams. Nature 389:921.Google Scholar
  89. O’Brien, M. K., H. R. valverde, A. C. Trembanis, and T. C. Haddad. 1999. Summary of beach nourishment activity along the Greal Lakes’ shoreline, 1955–1996. Journal of Coastal Research 15:206–219.Google Scholar
  90. Painter, D. S., K. J. Cabe, and L. Simser. 1989. Past and present limnological conditions in Cootes Paradise affecting aquatic vegetation. Royal Botanical Gardens, Hamiton, Ontario, Canada. Technical Bulletin No. 13.Google Scholar
  91. Passino-Reader, D. M., M. A. Kamrin, and J. P. Hickey. 1999. Natural remediation in the Great Lakes. Chapter 14.In C. M. Swindoll and R. G. Stahl (eds.) Natural Remediation of Environmental Contaminants: Its Role in Ecological Risk Assessment. SETAC Press, Pensacola, FL, USA.Google Scholar
  92. Piclou, E. C. 1975. Ecological Diviersity. J. Wiley and Sons, New York, NY, USA.Google Scholar
  93. Rawinski, T. J. and R. A. Malecki. 1984. Ecological relationships among purple loosestrife, cattail, and wildlife at Montezuma National Wildlife Refuge. New York Fish and Game Journal 31:83–87.Google Scholar
  94. Reeders, H. H., A. bij de Vaate, and R. Noordhuis. 1993. Potential of the zebra mussel (Dreissenapolymorpha) for water quality management. p. 439–451.In T. F. Nalepa and D. W. Schloesser (eds.) Zebra Mussels: Biology, Impacts, and Control. Lewis Publishers, Boca Raton, FL, USA.Google Scholar
  95. Richardson Marine Publishing. 1995. Richardson’s Chartbook & Cruising Guide: Lake Michigan Edition. Richardson Marine Publishing, Chicago, IL, USA.Google Scholar
  96. Royal Botanical Garden, 1997. Cootes Paradise Marsh Technical Workshop background document, Royal Botanical Garden. Hamilton, Ontario, Canada.Google Scholar
  97. Sager, E. P. S., T. H. Whillans, and M. G. Fox. 1998. Factors influencing the recovery of submersed macrophytes in four coastal marshes on Lake Ontario. Wetlands 18:256–265.Google Scholar
  98. Schloesser, D. W. 1996. Miltigation of unionid mortality caused by zebra mussel infestation: cleaning of unionids. North American Journal of Fisheries Management 16:942–946.Google Scholar
  99. Schloesser, D. W., T. F. Nalepa, and G. L. Mackie. 1996. Zebra mussel infestation of unionid bivalves (Unionidae) in North America. American Zoologist 36:300–310.Google Scholar
  100. Schnick, R. A., J. M. Morton, J. C. Mochalski, and J. T. Beall. 1982. Mitigation and enhancement techniques for the upper Mississippi River system and other large river systems. U. S. Fish and Wildlife Service, Washington, DC, USA. Resource Publication 149.Google Scholar
  101. Shapiro, J., B. Forsberg, V. Lamarra, G. Lindmark, M. Lynch, E. Smeltzer, and G. Zoto. 1982. Experiments and experiences in biomanipulation. University of Minnesota, Minneapolis, MN, USA. Interim Report No. 19.Google Scholar
  102. Shay, J. M., D. J. Thompson, and C. T. Shay. 1987. Post-fire performance ofPhragmites australis (Cav.) Trin in the Delta Marsh. Manitoba, Canada Archiv fuer Hydrobiologie Beiheft Ergebnisse der Limnologie 27:95–103.Google Scholar
  103. Silvester, R. and J. R. C. Hsu. 1991. New and old ideas in coastal sedimentation. Reviews in Aquatic Sciences 4:375–410.Google Scholar
  104. Skubinna, J. P., T. G. Coon, and T. R. Batterson. 1995. Increased abundance and depth of submersed macrophytes in response to decreased turbidity in Saginaw Bay, Lake Huron. Journal of Great Lakes Research 21:476–488.Google Scholar
  105. Sojda, R. S. and K. L. Solberg. 1993. Management and control of cattails. U.S. Fish and Wildlife Service, Washington, DC, USA. Fish and Wildlife Leaflet 13.4.13.Google Scholar
  106. Sondergaard, M., E. Jeppersen, and S. Berg. 1997. Pike (Esox lucius L.) stocking as a biomanipulation tool. 2. Effects on lower trophic levels in Lake Lyng, Denmark. Hydrobiologia 342/343:319–325.Google Scholar
  107. Spence, D. H. N. 1982. The zonation of plants in freshwater lakes. Advances in Ecological Research 12:37–124.Google Scholar
  108. Strus, R. 1995. Metro Toronto Waterfront: restoration of natural habitat structure. p. 55–58.In J. R. M. Kelso and J. H. Hartig (eds.) Methods of Modifying Habitat to Benefit the Great Lakes Ecosystem. CISTI (Canadian Institute of Science Technical Information) Occasional Paper No. 1.Google Scholar
  109. Thompson, D. J. and J. M. Shay. 1985. The effects of fire onPhragmites australis in the Delta Marsh, Manitoba. Candian Journal of Botany 63:1864–1869.Google Scholar
  110. Thompson, D. Q., R. L. Stuckey, and E. B. Thompson. 1987. Spread, impact, and control of purple loosestrife (Lythrum salicaria) in North American wetlands. U. S. Fish and Wildlife Service, Washington, DC, USA. Fish and Wildlife Research 2.Google Scholar
  111. Thompson, T. A. 1992. Beach-ridge development and lake-level variation in southern Lake Michigan. Sedimentary Geology 80:305–318.Google Scholar
  112. Thompson, T. A., G. S. Fraser, and N. C. Hester. 1991. Lake-level variation in southern Lake Michgan: magnitude and timing of fluctuations over the past 4.000 years. Indiana Geological Survey, Bloomington, IN, USA.Google Scholar
  113. Thunhorst, G. A. 1993. Wetland Planting Guide for the Northeastern United States. Environmental Concern, St. Michaels. MD. USA.Google Scholar
  114. Titus, J. E. and M. D. Stephens. 1983. Neighbor influences and seasonal growth patterns forVallisneria americana in a mesotrophic lake. Oecologia (Berl.) 56:23–29.Google Scholar
  115. Trotter, K. and J. D. Hall. 1998. Cootes Paradise fact sheet. Royal Botanical Gardens, Hamilton, Ontario, Canada.Google Scholar
  116. USACE. 1999. Monthly bulletin of lake levels for the Great Lakes. Detroit District, U. S. Army Corps of Engineers, Detroit. MI, USA.Google Scholar
  117. USEPA. 1994a. EPA’s contaminated sediment management strategy. U. S. Environmental Protection Agency, Washington, DC, USA. EPA 823-R-94-001.Google Scholar
  118. USEPA. 1994b. ARCS remediation guidance document. U. S. Environmental Protection Agency, Great Lakes National Program Office, Chicago, IL, USA., EPA 905-R-94-003.Google Scholar
  119. van der Toorn, J. and J. H. Mook. 1982. The influence of environmental factors and management of stands ofPhragmites australis. 1. Effects of burning, frost, and insect damage on shoot density and shoot size. Journal of Applied Ecology 19:477–499.Google Scholar
  120. van der Valk, A. G. 1981. Succession in wetlands: a Gleasonian approach. Ecology 62:688–696.Google Scholar
  121. van der Valk, A. G. and C. B. Davis. 1980. The impact of a natural drawdown on the growth of four emergent species in a prairie glacial marsh. Aquatic Botany 9:301–322.Google Scholar
  122. Vincent, J. 1995a. Wetland plantings within the Mimico Creek estuary, Humber Bay park, city of Etobicoke, p. 133–138.In J. R. M. Kelso and J. H. Hartig (eds.) Methods of Modifying Habitat to Benefit the Great Lakes Ecosystem. CISTI (Canadian Institute of Science Technical Information) Occasional Paper No. 1.Google Scholar
  123. Vincent, J. 1995b. Toronto Islands northern pike spawning habitat. p. 139–144.In J. R. M. Kelso and J. H. Hartig (eds.) Methods of Modifying Habitat to Benefit the Great Lakes Ecosystem. CISTI (Canadian Institute of Science Technical Information) Occasional Paper No. 1.Google Scholar
  124. Vincent, J. 1995c. Col. Samuel Smith waterfront park bass spawning area. p. 128–132.In J. R. M. Kelso and J. H. Hartig (eds.) Methods of Modifying Habitat to Benefit the Great Lakes Ecosystem. CISTI (Canadian Institute of Science Technical Information) Occasional Paper No. 1.Google Scholar
  125. Weller, M. W. 1981. Freshwater Marshes. University of Minnesota Press, Minneapolis, MN, USA.Google Scholar
  126. Weller, M. W. and C. S. Spatcher. 1965. Role of habitat in the distribution and abundance of marsh birds. Iowa Agricultural and Home Economics Experiment Station. Ames, IA, USA. Special Report No. 43.Google Scholar
  127. Westerdahl, H. E. and K. D. Getsinger (eds.). 1988. Aquatic plant identification and herbicide use guide; volume I: aquatic herbicides and application equipment, U.S. Army Engineer Waterways Experiment Station. Vicksburg, MS, USA. Technical Report A-88-9.Google Scholar
  128. Wetzel, R. G. 1975. Limnology. W. B. Saunders Company, Philadelphia, PA, USA.Google Scholar
  129. Whillans, T. H. 1996. Historic and comparative perspectives on rehabilitation of marshes as habitat for fish in the lower Great Lakes basin. Canadian Journal of Fisheries and Aquatic Sciences 53 (supplement 1):58–66.Google Scholar
  130. Wilcox, D. A. 1995. The role of wetlands as nearshore habitat in Lake Huron. p. 223–245.In M. Munawar, T. Edsall, and J. Leach (eds.) The Lake Huron Ecosystem: Ecology, Fisheries, and Management. SPB Academic Publishing by, Amsterdam, The Netherlands.Google Scholar
  131. Wilcox, D. A. and J. E. Meeker. 1991. Disturbance effects on aquatic vegetation in regulated and unregulated lakes in northern Minnesota. Canadian Journal of Botany 69:1542–1551.CrossRefGoogle Scholar
  132. Wilcox, D. A. and J. E. Meeker. 1992. Implications for faunal habitat related to altered macrophyte structure in regulated lakes in north ern Minnesota. Wetlands 12:192–203.CrossRefGoogle Scholar
  133. Wilcox, D. A., J. E. Meeker, and J. Elias. 1993. Impacts of water-level regulation on wetlands of the Great Lakes. Phase 2 Report to Working Committee 2, International Joint Commission Water-Levels Reference Study. Ottawa, Ontario, Canada and Washington, DC, USA.Google Scholar
  134. Wilcox, D. A. and G. Ray. 1989. Using living mat transplant to restore a salt-impacted bog (Indiana). Restoration and Management Notes 7(1):39.Google Scholar
  135. Wilcox, D. A., M. K. Seeling, and K. R. Edwards. 1988. Ecology and management potential for purple loosestrife (Lythrum salicaria). Proceedings of the Conference on Science in the National Parks 5:120–129.Google Scholar
  136. Zedler, J. B., G. D. Williams, and J. S. Desmond. 1997. Wetland mitigation: can fishes distinguish between natural and constructed wetlands? Fisheries 22(3):26–28.Google Scholar

Copyright information

© Society of Wetland Scientists 1999

Authors and Affiliations

  • Douglas A. Wilcox
    • 1
  • Thomas H. Whillans
    • 2
  1. 1.Great Lakes Science CenterU.S. Geological SurveyAnn ArborUSA
  2. 2.Environmental and Resource StudiesTrent UniversityOntarioCanada

Personalised recommendations