Skip to main content
Log in

Wetland restoration: The potential for assembly rules in the service of conservation

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

One of the pressing problems for applied ecologists is the efficeint restoration of structure and function to degraded ecosystems. Where some other conservation activities, such as protection of existing wilderness, continue to require making the best of increasingly bad situations, the goal of restoration raises the pleasing prospect of measurable improvement in landscapes. Restoration simultaneously provides the ultimate test for the discipline of community ecology: ecologists should be able to build an ecosystem in the same way an engineer builds a bridge, with a list of parts connected in specified ways leading to certain reliable outcomes. Failures would reveal that scientists do not adequately understand the system. Practical considerations suggest the application of tools that already exist rather than the invention of new ones. The objective of this paper is to suggest that two valuable tools may already exist, tools that provide an intellectual foundation for restoration ecology. Such a foundation is necessary because there has been a tendency for restoration ecology to represent a haphazard collection of individual cases rather than a well-defined discipline with repeatable methods. One possible scheme for unifying studies of restoration is that provided by assembly rules, where predictions are based upon key environmental factors and the responses of species to those factors. The potential of such assembly rules is introduced using three examples: fish in wetlands, plants in salt marshes, and plants in prairie potholes. I then describe an experiment where a standard species pool of wetland plants was sown into twenty-four different sets of environmental conditions, illustrating how landscapes can select communities out of larger pools. A second possible tool is indicators of ecosystem integrity. These can measure whether a project actually works. Clear discrimination between success and failure can improve restoration procedures by accelerating the evolution of management principles and techniques; Holling has called this process ‘adaptive environmental assessment.’ I conclude with the optimistic view that restoration already has the tools for continued progress; what is needed is primarily their intelligent application. That is, rather than ending with a typically academic plea for more research, I suggest (for a change) that what is needed is only the discriminating application of procedures and principles that already exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adam, P. 1990. Saltmarsh Ecology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Adams, G. D. 1988. Wetlands of the prairies of Canada. p. 158–198.In Wetlands of Canada. National Wetlands Working Group. Ecological Land Classification Series. No. 24. Sustainable Development Branch, Environment Canada. Ottawa, Ontario, Canada. and Polyscience Publications Inc., Montreal, Quebec, Canada.

    Google Scholar 

  • Adamus, P. R. 1992. Choices in monitoring wetlands. p. 571–592.In D. H. McKenzie, D. E. Hyatt, and V. J. McDonald (eds) Ecological Indicators. Elsevier Applied Science, London, UK.

    Google Scholar 

  • Batt, B. D. J., M. G. Anderson, C. D. Anderson, and F. D. Caswell. 1989. The use of prairie potholes by North American ducks. p. 204–227.In A. G. van der Valk (ed.) Northern Prairie Wetlands. Iowa State University Press, Ames, IA, USA.

    Google Scholar 

  • Bauder, E. T. 1989. Drought stress and competition effects on the local distribution ofPogogyne abramsii. Ecology 70:1083–1089.

    Google Scholar 

  • Beanlands, G. E. and P. N. Duinker. 1983. An ecological framework for environmental impact assessment in Canada. Institute for Resource and Environmental Studies Dalhousie University and Federal Environmental Assessment Review Office. Halifax, Nova Scotia, Canada.

    Google Scholar 

  • Beard, J. S. 1949. The Natural Vegetation of the Windward & Leeward Islands. Clarendon Press, Oxford, UK.

    Google Scholar 

  • Bégin, Y., S. Arseneault, and J. Lavoie. 1989. Dynamique d’une bordure forestière par suite de la hausse récente du niveau marin, rive sud-ouest du Golfe du Saint-Laurent, Nouveau-Brunswick. Géographie Physique et Quaternaire 43:355–366.

    Google Scholar 

  • Belkin, D. A. 1963. Anoxi: tolerance in reptiles. Science 139:492–493.

    PubMed  CAS  Google Scholar 

  • Bertness, M. D. 1991. Interspecific interactions among high marsh perennials in a New England salt marsh. Ecology 72:125–137.

    Google Scholar 

  • Bertness, M. D. and S. D. Hacker. 1994. Physical stress and positive associations among marsh plants. The American Naturalist 144: 363–372.

    Google Scholar 

  • Bertness, M. D., and G. H. Leonard. 1997. The role of positive interactions in communities: Lessons from intertidal habitats. Ecology 78:1976–1989.

    Google Scholar 

  • Bertness, M. D., L. Gough, and S. W. Shumway. 1992. Salt tolerances and the distribution of fugitive salt marsh plants. Ecology 73:1842–1851.

    Google Scholar 

  • Bloom, S. A. 1980. Multivariate quantification of community recovery. p. 141–151.In J. Cairns (ed.) The Recovery Process in Damaged Ecosystems. Ann Arbor Science Publishers, Ann Arbor, MI, USA.

    Google Scholar 

  • Boesch, D. F., M. N. Josselyn, A. J. Mehta, J. T. Morris, W. K. Nuttle, C. A. Simenstad, and D. P. J. Swift. 1994. Scientific Assessment of Coastal wetland loss, restoration and management in Louisiana. Journal of Coastal Research, Special Issue No. 20. Coastal Education and Research Foundation, Lawrence, KS, USA.

    Google Scholar 

  • Bolen, E. G., L. M. Smith, and H. L. Schramm, Jr. 1989. Playa lakes: prairie wetlands of the southern High Plains. BioScience 39:615–623.

    Google Scholar 

  • Bonnicksen, T. M. 1988. Restoration ecology: philosophy, goals and ethics. The Environmental Professional 10:25–35.

    Google Scholar 

  • Boutin, C., and P. A. Keddy. 1993. A functional classification of wetland plants. Journal of Vegetation Science 4:591–600.

    Google Scholar 

  • Cairns, J. (ed.). 1980. The Recovery Process in Damaged Ecosystems. Ann Arbor Science Publishers, Ann Arbor, MI, USA.

    Google Scholar 

  • Cairns, J. 1989. Restoring damaged ecosystems: is predisturbance condition a viable option? The Environmental Professional 11: 152–159.

    Google Scholar 

  • Cairns, J., Jr., B. R. Niederlehner, and D. R. Orvos. 1992. Predicting Ecosystem Risk. Advances in Modern Environmental Toxicology, Vol. XX. Princeton Scientific Publishing Company, Princeton, NJ, USA.

    Google Scholar 

  • Carpenter, J. F., J. R. Kitchell, P. A. Hodgson, J. J. Cochran, M. M. Elser, D. M. Elser, D. Lodge, X. He. Kretchmer, and C. N. von Ende. 1987. Regulation of lake primary productivity by food web structure. Ecology 68:1863–1876.

    Google Scholar 

  • Castellanos, E. M., M. E. Figueroa and A. J. Davy. 1994. Nucleation and facilitation in saltmarsh succession: Interactions betweenSpartina maritima andArthrocnemem perenne. Journal of Ecology 82:239–248.

    Google Scholar 

  • Chung, C. 1982. Low marshes, China. p. 131–145.In R.R. Lewis III (ed.) Creation and Restoration of Coastal Plant Communities. CRC Press, Boca Raton. FL, USA.

    Google Scholar 

  • Clements, F. E. 1935. Experimental ecology in the public service. Ecology 16:342–363.

    Google Scholar 

  • Cummins, K. W. 1973. Trophic relationships of aquatic insects. Annual Review of Entomology 18:83–206.

    Google Scholar 

  • Cummins, K. W. and M. J. Klug. 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.

    Google Scholar 

  • Diamond, J. M. 1975. Assembly of species communities. p. 342–444.In M. L. Cody and J. M. Diamond (eds.) Ecology and Evolution of Communities. Belknap Press, Harvard University Press, Cambridge, MA, USA.

    Google Scholar 

  • Dore, W. G. and J. McNeill. 1980. Grasses of Ontario. Monograph 26, Research Branch, Agriculture Canada, Ottawa, Ontario, Canada.

    Google Scholar 

  • Drake, J. A. 1990. Communities as assembled structures: do rules govern pattern? Trends in Ecology and Evolution 5:159–164.

    Google Scholar 

  • Eriksson, O. 1993. The species-pool hypothesis and plant community diversity. Oikos 68:371–374.

    Google Scholar 

  • Essame, H. 1974. Patton. A Study in Command. Scribner’s, New York, NY, USA.

    Google Scholar 

  • Freedman, B. 1995. Environmental Ecology (2nd ed.). Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Frey, R. W., and P. B. Basan. 1978. Coastal salt marshes. p. 101–169.In R. A. Davis (ed.) Coastal Sedimentary Environments, Springer-Verlag, New York, NY, USA.

    Google Scholar 

  • Galatowitsch, S. M. and A. G. van der Valk. 1994. Restoring Prairie Wetlands: An Ecological Approach. Iowa State University Press, Ames, IA, USA.

    Google Scholar 

  • Galatowitsch, S. M. and A. G. van der Valk. 1996. The vegetation of restored and natural prairie wetlands. Ecological Applications 6:102–112.

    Google Scholar 

  • García, L. V., T. Marañón, A. Moreno, and L. Clemente. 1993. Above-ground biomass and species richness in a Mediterranean salt marsh. Journal of Vegetation Science 4:417–424.

    Google Scholar 

  • Glooschenko, W. A. 1980. Coastal ecosystems of the James/Hudson Bay area of Ontario. Canada. Zeitschrift fuer Geomorphologie N.F. 34:214–224.

    Google Scholar 

  • Gough, L. G., J. B. Grace, and K. L. Taylor. 1994. The relationship between species richness and community biomass: the importance of environmental variables. Oikos 70:271–279.

    Google Scholar 

  • Gleason, H. A. and A. Cronquist. 1963. Manual of Vascular Plants of the Northeastern United States and Adjacent Canada. Willard Grant, Boston, MA, USA.

    Google Scholar 

  • Goldsmith, F. B. (ed.). 1991. Monitoring for Conservation and Ecology. Chapman and Hall, London, UK.

    Google Scholar 

  • Goulding, M. 1980. The Fishes and the Forest: Explorations in Amazonian Natural History. University of California Press, Berkley, CA, USA.

    Google Scholar 

  • Grace, J. B. and D. Tilman. (eds.) 1990. Perspectives on Plant Competition. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Grime, J. P., and R. Hunt. 1975. Relative growth rate: its range and adaptive significance in a local flora. Journal of Ecology 63:393–422.

    Google Scholar 

  • Grime, J. P., G. Mason, A. V. Curtis, J. Rodman, S. R. Band, M. A. G. Mowforth A. M. Neal, and S. Shaw. 1981. A comparative study of germination characteristics in a local flora. Journal of Ecology 69:1017–1059.

    Google Scholar 

  • Gurevitch, J., L. Morrow, A. Wallace, and J. Walsh. 1992. A meta-analysis of competition in field experiments. The American Naturalist 140:539–572.

    Google Scholar 

  • Hoagland, B. W., and S. L. Collins. 1997. Heterogeneity in short-grass prairie vegetation: the role of playa lakes. Journal of Vegetation Science 8:277–286.

    Google Scholar 

  • Holling, C. S. (ed.) 1978. Adaptive Environmental Assessment and Management. International Institute for Applied Systems Analysis, John Wiley and Sons, Chichester, UK.

    Google Scholar 

  • Hughes, L., M. Dunlop, K. French, M. R. Leishman, B. Rice, L. Rodgerson, and M. Westoby. 1994. Predicting dispersal spectra: a minimal set of hypotheses based on plant attributes. Journal of Ecology 82:933–950.

    Google Scholar 

  • Jefferies, R. L. 1988. Pattern and process in Arctic coastal vegetation in response to foraging by lesser snow geese. p. 281–300.In M. J. A. Werger, P. J. M. van der Aart, H. J. During, and J. T. A. Verhoeven. Plant Form and Vegetation Structure. SPB Academic Publishing, The Hague, The Netherlands.

    Google Scholar 

  • Jones, C. G., J. H. Lawton, and M. Shachak. 1994. Organisms as ecosystem engineers. Oikos 69:373–386.

    Google Scholar 

  • Jones, R. K., G. Pierpoint, G. M. Wickware, J. K. Jeglum, R. W. Arnup, and J. M. Bowles. 1983. Field Guide to Forest Ecosystem Classification for the Clay Belt, Site Region 3e. Ontario Ministry of Natural Resources, Thunder Bay, Ontario, Canada.

    Google Scholar 

  • Jordan, W. R., M. E. Gilpin, and J. D. Aber. 1987. Restoration Ecology. A Synthetic Approach to Ecological Research. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Junk, W. J. 1984. Ecology of thevarzea, floodplain of Amazonian white-water rivers. p. 215–243.In H. Sioli (ed.) The Amazon Limnology and Landscape Ecology of a Mighty Tropical River and its Basin. Junk Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Junk, W. J., M. G. M. Soares, and U. Saint-Paul. 1997. The Fish. The Central Amazon Floodplain. Ecological Studies 126:385–408.

    Google Scholar 

  • Kantrud, H. A., J. B. Millar, and A. G. van der Valk. 1989. Vegetation of the wetlands of the prairie pothole region. p. 132–187.In A. G. van der Valk (ed.) Northern Prairie Wetlands. Iowa State University Press, Ames, IA, USA.

    Google Scholar 

  • Keddy, C. J., and T. McCrae. 1989. Environmental databases for State of the Environment Reporting: Conservation and Protection Head Quarters. State of the Environment Reporting Branch, Environment Canada, Ottawa, Ontario, Canada. Technical Report No. 19.

    Google Scholar 

  • Keddy, P. A. 1976. Lakes as islands: the distributional ecology of two aquatic plants,Lemna minor L. andL. trisulca L. Ecology 57:163–359.

    Google Scholar 

  • Keddy P. A. 1989. Competition. Chapman and Hall, London, UK.

    Google Scholar 

  • Keddy, P. A. 1991. Biological monitoring and ecological prediction: from nature reserve management to national state of the environment indicators. p. 249–267.In F. B. Goldsmith (ed.) Monitoring for Conservation and Ecology. Chapman and Hall, London, UK.

    Google Scholar 

  • Keddy, P. A. 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3: 157–164.

    Google Scholar 

  • Keddy, P. A. 1999. Epilogue: from global exploration to community assembly. p. 393–402.In E. Weiher, and P. A. Keddy (eds.) Ecological Assembly Rules: Perspectives, Advances, Retreats. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Keddy, P. A., and A. A. Reznicek. 1986. Great Lakes vegetation dynamics: the role of fluctuating water levels and buried seeds. Journal of Great Lakes Research 12:25–36.

    Google Scholar 

  • Keddy, P. A., H. T. Lee, and I. C. Wisheu. 1993. Choosing indicators of ecosystem integrity: Wetlands as a model system. p. 61–79.In S. Woodley, J. Kay, and G. Francis (eds.) Ecological Integrity and the Management of Ecosystems. St. Lucie Press, Delray Beach, FL, USA.

    Google Scholar 

  • Keddy, P. A., L. H. Fraser, and I. C. Wisheu. 1998. A comparative approach to examine competitive response of 48 wetland plant species. Journal of Vegetation Science 9:777–786.

    Google Scholar 

  • Keddy, P. A. and E. Weiher. 1999. Introduction: the scope and goals of research on assembly rules. p. 1–20.In E. Weiher and P. A. Keddy (eds.) Ecological Assembly Rules: Perspectives, Advances, Retreats. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Keogh, T. M., P. Keddy, and L. H. Fraser. 1999. Patterns of tree species richness in forested wetlands. Wetlands 19:639–647.

    Google Scholar 

  • Kramer, D. L., C. C. Lindsay, G. E. E. Moodie, and E. D. Stevens. 1978. The fishes and the aquatic environment of the Central Amazon basins, with particular reference to respiratory patterns. Canadian Journal of Zoology 56:717–729.

    Google Scholar 

  • Kusler, J. A. and M. E. Kentula. (eds.). 1990. Wetland Creation and Restoration: Status of the Science. Island Press, Washington, DC, USA.

    Google Scholar 

  • Lane, P. A. 1985. A food web approach to mutualism in lake communities. p. 344–374.In D. H. Boucher (ed.) The Biology of Mutualism. Ecology and Evolution. Oxford University Press, New York, NY, USA.

    Google Scholar 

  • Larson, D. W. 1996. Brown’s Woods: an early gravel pit forest restoration project, Ontario, Canada. Restoration Ecology 4:11–18.

    Google Scholar 

  • Levine, J., J. S. Brewer, and M. D. Bertness. 1998. Nutrients, competition and plant zonation in a New England salt marsh. Journal of Ecology. 86:285–292.

    Google Scholar 

  • Lewontin, R. C. 1974. The Genetic Basis of Evolutionary Change. Columbia University Press, New York, NY, USA.

    Google Scholar 

  • Lockwood, J. L. and S. L. Pimm. 1999. When does restoration succeed? p. 363–392.In E. Weiher and P. A. Keddy (eds.) Ecological Assembly Rules: Perspectives, Advances, Retreats. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Lodge, D. M. 1991. Herbivory on freshwater macrophytes. Aquatic Botany 41:195–224.

    Google Scholar 

  • Lowe-McConnell, R. H. 1975. Fish Communities in Tropical Freshwaters. Their Distribution, Ecology and Evolution. Longman, London, UK.

    Google Scholar 

  • MacArthur, R. H. and E. O. Wilson. 1967. The Theory of Island Biogeography. Monographs in Population Biology. No. 1. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • Magnuson, J. J., C. A. Paszkowski, F. J. Rahel, and W. M. Tonn. 1989. Fish ecology in severe environments of small isolated lakes in Northern Wisconsin. p. 487–515.In R. Sharitz and J. W. Gibbons (eds.) Freshwater Wetlands and Wildlife. USDOE Office of Scientific and Technical Information, Oak Ridge, TN, USA. Conf-8603101, DOE symposium Series No 61.

    Google Scholar 

  • McKenzie, D. H., D. E. Hyatt, and V. J. McDonald. 1992. Ecological Indicators Vols. 1 & 2. Elsevier, London, UK.

    Google Scholar 

  • Meave, J., M. Kellman, A. MacDougall, and J. Rosales. 1991. Riparian habitats as tropical refugia. Global Ecology and Biogeography Letters 1:69–76.

    Google Scholar 

  • Michener, W. K., E. R. Blood, K. L. Bildstein, M. M. Brinson, and L. R. Gardner. 1997. Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecological Applications 7:770–801.

    Google Scholar 

  • Niering, W. A. and R. S. Warren. 1980. Vegetation patterns and processes in New England salt marshes. Bioscience 30:301–307.

    Google Scholar 

  • Noss, R. 1995. Maintaining Ecological Integrity in Representative Reserve Networks. A World Wildlife Fund Canada/World Wildlife Fund United States Discussion Paper. World Wildlife Fund, Toronto, ON, Canada.

    Google Scholar 

  • Odum, E. P. 1985. Trends expected in stressed ecosystems. BioScience 35:419–422.

    Google Scholar 

  • Partridge, T. R., and J. B. Wilson. 1987. Salt tolerance of salt marsh plants of Otago, New Zealand. New Zealand Journal of Botany 25:559–566.

    Google Scholar 

  • Phipps, R. W. 1883. On the Necessity of Preserving and Replanting Forests. Blackett and Robinson, Toronto, Ontario, Canada.

    Google Scholar 

  • Pfadenhauer, O. J. and F. Klotzli. 1996. Restoration experiments in middle European wet terrestrial ecosystems: an overview. Vegetatio 126:101–115.

    Google Scholar 

  • Racey, G. D., A. G. Harris, J. K. Jeglum, R. F. Foster, and G. M. Wickware. 1996. Terrestrial and Wetland Ecosites of Northwestern Ontario. Ontario Ministry of Natural Resources, Thunder Bay, Ontario, Canada. NWST Field Guide FG-02.

    Google Scholar 

  • Rapport, D. J., C. Thorpe, and T. C. Hutchinson. 1985. Ecosystem behavior under stress. American Naturalist 125:617–640.

    Google Scholar 

  • Rapport, D. J. 1989. What constitutes ecosystem health? Perspectives in Biology and Medicine 33:120–132.

    Google Scholar 

  • Rigler, F. H. 1982. Recognition of the possible: An advantage of empiricism in ecology. Canadian Journal of Fisheries and Aquatic Sciences 39:1323–1331.

    Google Scholar 

  • Rigler, R. T., and R. H. Peters. 1995. Science and Limnology. Ecology Institute, Oldendorf, Germany.

    Google Scholar 

  • Schoener, T. W. 1983. Field experiments on interspecific competition. The American Naturalist 122:240–285.

    Google Scholar 

  • Schoener, T. W. 1985. Some comments on Connell’s and my reviews of field experiments on interspecific competition. The American Naturalist 125:730–740.

    Google Scholar 

  • Sculthorpe, C. D. 1967. The Biology of Aquatic Vascular Plants. Reprinted in 1985 by Edward Arnold, London, UK.

  • Severinghaus, W. D. 1981. Guild theory development as a mechanism for assessing environmental impact. Environmental Management 5:187–190.

    Google Scholar 

  • Shaffer, G. P., C. E. Sasser, J. G. Gosselink, and M. Rejmanck. 1992. Vegetation dynamics in the emerging Atchafalaya Delta, Lousiana, USA. Journal of Ecology 80:677–687.

    Google Scholar 

  • Sheail, J. and T. C. E. Wells. 1983. The fenlands of Huntingdonshire, England: A case study in catastrophic change. p. 375–393.In A. J. P. Gore (ed.) Ecosystems of the World 4B. Mires: Swamp, Bog, Fen and Moor. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Shay, J. M. and C. T. Shay. 1986. Prairie marshes in western Canada, with specific reference to the ecology of live emergent macrophytes. Canadian Journal of Botany 64:443–454.

    Google Scholar 

  • Shipley, B., P. A. Keddy, D. R. J. Moore, and K. Kemky. 1989. Regeneration and establishment strategies of emergent macrophytes. Journal of Ecology 77:1093–1110.

    Google Scholar 

  • Simberloff, D. and T. Dayan. 1991. The guild concept and the structure of ecological communities. Annual Review of Ecology and Systematies 22:115–143.

    Google Scholar 

  • Smith, L. M. and J. A. Kadlec. 1985. Fire and herbivory in a Great Salt Lake marsh. Ecology 66:259–265.

    Google Scholar 

  • Snow, A. A. and S. W. Vince. 1984. Plant zonation in an Alaskan salt marsh II: An experimental study of the role of edaphic conditions. Journal of Ecology 72:669–684.

    Google Scholar 

  • Steneck, R. S. and M. N. Dethier. 1994. A functional group approach to the structure of algal-dominated communities. Oikos 69:476–498.

    Google Scholar 

  • Sykes, M. T. and J. B. Wilson. 1989. The effect of salinity on the growth of some New Zealand sand dune species. Acta Botanica Neerlandica 38:173–182.

    Google Scholar 

  • Tansley, A. G. 1914. Presidential Address. Journal of Ecology 2: 194–203.

    Google Scholar 

  • Thorson, T. and A. Svihla. 1943. Correlations of the habitats of amphbians with their ability to survive the loss of body water. Ecology 24:374–381.

    Google Scholar 

  • Tomlinson, P. B. 1986. The Botany of Mangroves. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Tonn, W. M., and J. J. Magnuson. 1982. Patterns in the species composition and richness of fish assemblages in northern Wisconsin lakes. Ecology 63:1149–1166.

    Google Scholar 

  • Twolan-Strutt, L. and P. A. Keddy. 1996. Above- and below-ground competition intensity in two contrasting wetland plant communities. Ecology 77:259–270.

    Google Scholar 

  • Underwood, T. 1986. The analysis of competition by field experiments. p. 240–268.In J. Kikkawa and D. J. Anderson (eds.) Community Ecology. Pattern and Process. Blackwell, Melbourne, Australia.

    Google Scholar 

  • van der Valk, A. G. 1981. Succession in wetlands: a Gleasonian approach. Ecology 62:688–696.

    Google Scholar 

  • van der Valk, A. G. 1988. From community ecology to vegetation management: providing a scientific basis for management. p. 463–470.In Transactions of the Fifty-third North American Wildlife and Natural Resources Conference, Wildlife Management Institute, Washington, DC, USA.

  • van der Valk, A. G. and C. B. Davis. 1978. The role of scedbanks in the vegetation dynamics of prairie glacial marshes. Ecology 59: 322–335.

    Google Scholar 

  • Walker, B. H. and C. F. Wehrhahn. 1971. Relationships between derived vegetation gradients and measured environmental variables in Saskatchewan wetlands. Ecology 52:85–95.

    CAS  Google Scholar 

  • Weiher, E. and P. A. Keddy. 1995. The assembly of experimental wetland plant communities. Oikos 73:323–335.

    Google Scholar 

  • Weiher, E. and P. A. Keddy. 1999. Ecological Assembly Rules: Perspecitives, Advances, Retreats. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Weiher, E., I. C. Wisheu, P. A. Keddy, and D. R. J. Moore. 1996. Establishment, persistence, and management implications of experimental wetland plant communities. Wetlands 16:208–218.

    Google Scholar 

  • Weinberg, G. M. 1975. An Introduction to General Systems Thinking. John Wiley and Sons, New York, NY, USA.

    Google Scholar 

  • Weins, J. A. 1983. Avian community ecology: an iconoclastic view. p. 355–403.In A. H. Brush and G. A. Clark, Jr. (eds.) Perspectives in ornithology. Essays presented for the centennial of the American Ornithologists’ Union. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Whittaker, R. J. and S. H. Jones. 1994. Structure in re-building insular ecosystems: an empirically derived model. Oikos 69:524–529.

    Google Scholar 

  • Wilbur, H. M. 1984. Complex life cycles and community organization in amphibians. p. 195–225.In P. W. Price, C. N. Slobodchikoff, and W. S. Gaud (eds.) A New Ecology: Novel Approaches to Interactive Systems. Wiley and Sons, New York, NY, USA.

    Google Scholar 

  • Wild Earth. 1992. The Wildlands Project. Special Issue. Wild Earth, Tucson, AZ, USA.

    Google Scholar 

  • Woodley, S., J. Kay, and G. Francis (eds.) 1993. Ecological Integrity and the Management of Ecosystems. St. Lucie Press, Delray Beach, FL, USA.

    Google Scholar 

  • Woodwell, G. M. and R. H. Whittaker. 1968. Effects of chronic gamma irradiation on plant communities. The Quarterly Review of Biology 43:42–55.

    PubMed  CAS  Google Scholar 

  • Zedler, J. B. and C. P. Onuf. 1984. Biological and physical filtering in arid-region estuaries: seasonality, extreme events, and effects of watershed modification. p. 415–432.In V. S. Kennedy (ed.) The Estuary as a Filter. Academic Press, New York, NY, USA.

    Google Scholar 

  • Zedler, J. B. and P. A. Beare. 1986. Temporal variability of salt marsh vegetation: the role of low-salinity gaps and environmental stress. p. 295–306.In D. A. Wolfe (ed.) Estuarine Variability. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Zhulidov, A. V., J. V. Headley, R. D. Roberts, A. M. Nikanorov, and A. A. Ischenko. 1997. Atlas of Russian Wetlands. Environment Canada, National Hydrology Research Institute, Saskatoon, Saskatchewan, Canada.

    Google Scholar 

  • Zobel, M. 1997. The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends in Ecology and Evolution 12:266–269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keddy, P. Wetland restoration: The potential for assembly rules in the service of conservation. Wetlands 19, 716–732 (1999). https://doi.org/10.1007/BF03161780

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03161780

Key Words

Navigation